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Abstract. In this note, we study the twisted Jacquet modules of sub-quotients of principal
series representations of GL2(D) where D is a division algebra over a non-archimedean local
field F . We begin with a proof of a conjecture of D. Prasad on twisted Jacquet modules of Speh
representations of GL2(D) when D is the quaternionic division algebra. For arbitrary division
algebras D over F , we focus on depth-zero principal series. We compute the dimensions of
twisted Jacquet modules of generalized Speh representations and investigate their structure
explicitly in the depth-zero situation.

1. Introduction

The multiplicity one result on Whittaker models has been a central result in the represen-
tation theory of quasi-split reductive groups over local fields. The dimension of the space of
generalised Whittaker linear functions on an irreducible smooth representation of a reductive
group over a local field can be greater than one. The dimensions of the space of generalised
Whittaker models for reductive p-adic groups is a useful invariant to describe the measure of
the representation. It is also intricately related with some well known branching problems,
for instance, Prasad conjectured that the space of generalised Whittaker linear functions of a
Speh representation of GL2(H), where H is quaternionic division algebra over F is one dimen-
sional; this is related to the Gan–Gross–Prasad conjectures. However, the space of Whittaker
linear functionals seems to be far from being well understood. In this note, we focus on the
group GL2(D) where D is an arbitrary division algebra over a non-archimedean local field F
and study non-degenerate Whittaker models, also known as the twisted Jacquet modules, of
sub-quotients of principal series representations of GL2(D).

To fix some notations, let τ be an irreducible smooth representation of D×. Let ντ be an

unramified character of D× such that the normalised induction τν
−1/2
τ × τν

1/2
τ is reducible

and the generalised Steinberg representation St(τ) occurs as the quotient. The irreducible

sub-representation of τν
−1/2
τ × τν

1/2
τ , denoted by Sp(τ), is the Speh representation associated

with τ . Let B be the minimal parabolic subgroup of GL2(D) consisting of upper triangular
matrices with unipotent radical N . Let ψ : F → C× be a non-trivial additive character on F ,
viewed as the character on N via

ψ

((
1 x
0 1

))
= ψ(TrD/F (x)),

where TrD/F is the reduced trace. The twisted Jacquet module of a smooth representation
(π, V ) of GL2(D) is the space πN,ψ of ψ-coinvariants ofN in V , and is naturally a representation
of D×.
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Based on a multiplicity one result of Rallis, D. Prasad made a conjecture for the quaternionic
division algebra D which predicts that Sp(τ)N,ψ is a character and precisely describes this
character as a D×-representation. We first prove this conjecture (see Theorem 3.1):

Theorem 1.1. Let D be the quaternionic division algebra and τ be a smooth irreducible
representation of D× of dimension > 1. Then the D×-representation Sp(τ)N,ψ is isomorphic
to ωτ ◦NrD/F where ωτ is the central character of τ and NrD/F is the reduced norm map of D.

The above theorem is proved by comparing the germ expansions of representations of
GL2(D) and GL4(F ) which correspond to each other under the Jacquet–Langlands corre-
spondence. This gives that the twisted Jacquet module Sp(τ)N,ψ is one-dimensional. The
explicit action of D× on this one-dimensional space is given by a result of Gan and Takeda on
Shalika models of GL2(D). The idea of comparing local character expansions of representa-
tions to study twisted Jacquet modules for non-quasi-split groups has been recently used by
Y. Cai to construct a family of Speh representations having unique models of degenerate type
[Cai23].

For an arbitrary division algebra D, we focus on depth-zero principal series of GL2(D).
Let I be the standard Iwahori subgroup and I(1) be the pro-p radical of I. Assume that ψ
restricts to a non-trivial character ψ0 on I(1)∩N . For any smooth representation (σ,W ) of I,
let W I(1),ψ0 denote the space {w ∈ W : σ(g)w = ψ0(g)w,∀g ∈ I(1)}. We prove the following
theorem which can be considered as the analogue of the result of Moy and Prasad on the
compatibility of I(1)-invariants with Jacquet modules (see Theorem 4.1).

Theorem 1.2. Let τ1 and τ2 be two irreducible depth-zero representations of D×. Then the
natural map

(τ1 × τ2)
I(1),ψ0 → (τ1 × τ2)N,ψ

is an isomorphism.

Using the above theorem, we prove that the natural maps

Sp(τ)I(1),ψ0 → Sp(τ)N,ψ

and
St(τ)I(1),ψ0 → St(τ)N,ψ

are isomorphisms. The results of Minguez and Secherre [MS14] on the kmax functor describe
a crucial part of the space of invariants for the first principal congruence subgroup K(1).
Putting together the results of Minguez and Secherre with the above isomorphisms, we obtain
for depth zero τ that the dimension of Sp(τ)N,ψ is equal to d(d−1)/2 where d is the dimension
of τ (see Corollary 4.5). Note that the dimension of Sp(τ)N,ψ does not depend on the index
of the division algebra D and the Speh representations no longer support unique Whittaker
models when d > 2. In the case where d is odd, we show that the D×-representation Sp(τ)N,ψ
is isomorphic to the exterior square representation (see Proposition 4.8). The case where d = 2
is arithmetically more involved and we use some computations on Gauss sums to determine
the explicit structure of the twisted Jacquet module of Sp(τ). In this context, we generalize
Theorem 1.1 to arbitrary division algebras and obtain a different proof of it in the situation
of the quaternionic division algebra (see Theorem 4.9). The key here is to carefully analyze
the action of D× (sitting diagonally in the subgroup of diagonal matrices) on V K(1) for a
depth-zero irreducible non-cuspidal representation V of GL2(D).
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2. Preliminaries

We fix some notation and recall some facts.

2.1. Let F be a non-archimedean local field of residue characteristic p, oF be the ring of
integers in F , pF ⊆ oF be the maximal ideal, and Fq be the residue field of F of cardinality q.
Let D be a central division algebra over F index n. The maximal order of D is denoted by
oD and the maximal ideal of oD is denoted by pD. For a central simple algebra A over a field
k, the reduced norm map (resp. the reduced trace map) is denoted by NrA/k (resp. TrA/k).
Similarly, for a finite field extension l/k, the field norm map (resp. the field trace map) is
denoted by Nrl/k (resp. Trl/k). For z ∈ C× we denote by µz the unramified character of D×

which sends a uniformizer ϖD of D to z. Let ϖF = ϖn
D. Then NrD/F (ϖD) = (−1)n+1ϖF .

2.2. For a divisor d of n with n = md, let Fd denote the unramified extension of F of degree d
viewed as a subfield ofD, andDm denote the centralizer of Fd inD. The algebraDm is a central
division algebra over Fd of index m. Let θ : F×

d → C× be a tamely ramified character all whose
Galois conjugates are distinct. Composing it with the reduced norm NrDm/Fd

: D×
m → F×

d

and extending it to D×
mD(1) by declaring it to be trivial on D(1) = 1 + ϖDOD, we have a

character θ̃ : D×
mD(1) → C×. Note that D×

mD(1) = o×D ⋊ϖdZ
D . Inducing θ̃ to D×, we obtain

a smooth tamely ramified irreducible d-dimensional representation IndD
×

D×
mD(1)

θ̃ of D×. All

smooth tamely ramified irreducible representations of D× are obtained in this fashion [SZ05].

2.3. Let G be the group GL2(D). Let B ⊆ G be the subgroup of upper triangular matrices
(the standard minimal parabolic subgroup), N ⊆ B be the subgroup of upper triangular
unipotent matrices (the unipotent radical of B), and T ⊆ B be the subgroup of diagonal
matrices (the Levi quotient of B). The group D× is viewed as a subgroup of T sitting
diagonally in it. We denote by K the maximal compact subgroup GL2(oD) of G. Let I denote
the standard Iwahori subgroup of G and K(1) and I(1) be the pro-p radicals of K and I
respectively. Let T0 = T ∩K. A non-trivial additive (smooth) character ψF : F → C× gives
rise to a non-trivial additive character ψ = ψF ◦ TrD/F on D which is to be considered as a
character of N . For a smooth representation (π, V ) of G, the space spanned by the set of
vectors {π(n)v − ψ(n)v : v ∈ V, n ∈ N} is denoted by V (N,ψ). The twisted Jacquet module
VN,ψ of V is the quotient V/V (N,ψ) considered as a representation of stabT (ψ) = D×. Recall
that the Jacquet-Langlands lemma says that a vector v ∈ V (N,ψ) if and only if∫

N
ψ−1(n)π(n)vdn = 0,

for some compact open subgroup N of N (see [BZ76, Lemma 2.33]).

2.4. For an irreducible smooth representation τ of D×, there exists an unramified character

ντ such that the normalized principal series representation τν
−1/2
τ × τν

1/2
τ of G is reducible of

length 2 and has a unique square-integrable quotient, the Steinberg representation, denoted
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by St(τ). The subrepresentation Sp(τ) of τν
−1/2
τ × τν1/2τ is called the Speh representation. We

have the following short exact sequences of G-representations:

0 −→ Sp(τ) −→ τν−1/2
τ × τν1/2τ −→ St(τ) → 0

and

0 −→ St(τ) −→ τν1/2τ × τν−1/2
τ −→ Sp(τ) → 0.

We refer to Tadic for the above results [Tad90]. For a principal series τ1 × τ2 of G, there is a
natural isomorphism of D×-representations

(τ1 × τ2)N,ψ ≃ τ1 ⊗ τ2,

see [PR00, Theorem 2.1]. We note that Sp(τ)N,ψ ̸= 0 if and only if τ has dimension > 1.

3. Proof of the conjecture of D. Prasad

In a note [Pra], D. Prasad conjectured that

Sp(τ)N,ψ ≃ ωτ ◦ NrD/F
as D×-representations when D is the quaternionic division algebra and τ is a smooth irre-
ducible representation of D× of dimension > 1. We first prove this conjecture:

Theorem 3.1. Let D be the quaternionic division algebra over F and let τ be a smooth
irreducible representation of D× of dimension > 1. Then

Sp(τ)N,ψ ≃ ωτ ◦ NrD/F
as D×-representations.

Proof. It is enough to show that Sp(τ)N,ψ is one-dimensional because a result [GT10, Theorem
8.6] of Gan and Takeda on the Shalika models of Speh representations then implies that the
D×-representation Sp(τ)N,ψ is isomorphic to ωτ ◦ NrD/F .

Denote by σ the Jacquet-Langlands lift of τ . Let ∆ be the segment [σν−1/2, σν1/2] and
let ⟨∆⟩ be the irreducible subrepresentation of GL4(F ) associated with the segment ∆ in
[Zel80, Section 3]. The Jacquet-Langlands correspondence between G = GL2(D) and GL4(F ),
and its extension to the Grothendieck groups of irreducible smooth representations, takes
the representation Sp(τ) to ⟨∆⟩. Note that the coefficient of the leading term in the germ
expansion of Sp(τ), denoted by cO(Sp(τ)), is the dimension of Sp(τ)N,ψ. Now, comparing the
germ expansions of Sp(τ) and ⟨∆⟩, we get that

cO(Sp(τ)) = cO′(⟨∆⟩),

where O′ is the nilpotent orbit of gl4(F ) corresponding to the partition (2, 2) (see [Pra00,
Theorem 2]). Using [Zel80, Proposition 3.4]), we get that (2, 2) is the maximal element in the
Whittaker support of ⟨∆⟩. Then using [MgW87, Theorem I.16], the nilpotent orbit (2, 2) is
the maximal nilpotent orbit in the germ expansion of ⟨∆⟩ and thus cO′(⟨∆⟩) is 1. □

Remark 3.2. Note that the above argument does not work when D is not the quaternionic
division algebra because the non-trivial nilpotent orbit of gl2(D) corresponds to the nilpotent
orbit of gl2n(F ) associated with the partition (n, n) of 2n, where as the maximal element in
the Whittaker support of ⟨∆⟩ corresponds to the partition (2, 2, . . . , 2) of 2n.
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4. Further results in the tame case

To understand the structure of twisted Jacquet modules of Speh representations for arbitrary
division algebra, we restrict ourselves from now on to tamely ramified (depth-0) representa-
tions. A generalization of Theorem 3.1 is obtained for an arbitrary division algebra in the
tame case.

4.1. Dimension formulae. Fix an additive character ψF : F → C× such that ψF is non-
trivial on oF but trivial on pF . Then ψ = ψF ◦ TrD/F is non-trivial on oD and trivial on pD.
The map (

a b
ϖDc d

)
7→ ψ(b)

defines a non-trivial character ψ0 on the group I(1). For any smooth representation V of I(1),
the space of ψ0-semi-invariants is

V I(1),ψ0 = {v ∈ V : g.v = ψ0(g)v for all g ∈ I(1)}.
If V is a smooth G-representation, then we note that V I(1),ψ0 is stable under the action of D×.
This is because ψ is trivial on pF and factors through TrD/F .

Let τ1 and τ2 be two irreducible smooth depth-zero representations of D× of dimensions d1
and d2 respectively. In this subsection, we prove the following theorem.

Theorem 4.1. The restriction of the natural map τ1 × τ2 → (τ1 × τ2)N,ψ to the subspace
(τ1 × τ2)

I(1),ψ0:

(τ1 × τ2)
I(1),ψ0 → (τ1 × τ2)N,ψ (4.1)

is an isomorphism of D×-representations.

Note that

(τ1×τ2)I(1),ψ0 = HomI(1)(ψ0, τ1×τ2) = HomI(1)(ψ0, (τ1×τ2)K(1)) = HomI(1)(ψ0, Ind
K
I (τ1⊗τ2)).

Thus the space (τ1 × τ2)
I(1),ψ0 has dimension d1d2.

Before we begin the proof of the theorem, we prove some lemmas. For an integer r, let

N(r) =

(
1 prD
0 1

)
. Note ψ|N(0) = ψ0|N(0).

Lemma 4.2. Let f be a non-zero element of (τ1 × τ2)
I(1),ψ0, then we have∫

N(0)

ψ−1(n)f(sn)dn = vol(N(0))f(s) ̸= 0.

Proof. The function f is nonzero if and only if f |K is so. We have K = I ⊔ IsI. Observe
that f(1) = 0 because ψ|N(0) is non-trivial. From this, we get that f(i) = 0, for all i ∈ I =
(k×D × k×D)I(1). The double coset IsI is equal to the set (I ∩ B)sI(1). If f(s) = 0, then the
function f is identically zero on the double coset IsI, and hence on K. Thus f(s) ̸= 0. □

Lemma 4.3. For any smooth representation V of N , and v ∈ V , the image of v in VN,ψ is
non-zero if and only if ∫

N(−r)
ψ−1(n)π(n)vdn

is non-zero for all r >> 0.
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Proof. Assume that the image of a vector v ∈ V in VN,ψ is zero. Then there exists a compact
open subgroup N such that ∫

N
ψ−1(n)π(n)vdn = 0.

Since {N(−r) : r > 0} is an increasing filtration of N , there exists an r such that N ⊂ N(−r).
Thus, ∫

N(−r)
ψ−1(n)π(n)vdn =

∑
g∈N(−r)/N

ψ−1(g)π(g)

∫
N
ψ−1(n)π(n)vdn = 0,

for all r such that N ⊂ N(−r). Conversely, if the above integral is zero for any r > 0, then
the image of v in VN,ψ is zero. □

Proof of Theorem 4.1. For any positive integer r and u ∈ o×D, we have the following matrix
identity: (

0 1
1 0

)(
1 ϖ−r

D u
0 1

)
=

(
0 1
1 ϖ−r

D u

)
=

(
−ϖ−r

D u 1
0 ϖr

D

)−1(
1 0
ϖr
D u

)
. (4.2)

Let f ∈ (τ1 × τ2)
I(1),ψ0 be a non-zero function and fr :=

∫
N(−r) ψ

−1(n)π(n)fdn. Then

fr(s) =

∫
N(−r)

ψ−1(n)f(sn)dn =

∫
p−r
D

ψ−1(y)f

(
s

(
1 y
0 1

))
dy

=
∑

a∈p−r
D /p−r+1

D

∫
p−r+1
D

ψ−1(a+ y)f

(
s

(
1 (a+ y)
0 1

))
dy

=fr−1(s) +
∑
a̸=0

∫
p−r+1
D

ψ−1(a+ y)f

(
s

(
1 (a+ y)
0 1

))
dy.

If r > 0, then using the identity (4.2) and that f(i) = 0 for i ∈ I (cf. the proof of Lemma
4.2), we get that ∫

p−r+1
D

ψ−1(a+ y)f

(
s

(
1 (a+ y)
0 1

))
dy = 0 for a ̸= 0.

Thus, we obtain fr(s) = fr−1(s) for all r > 0. By Lemma 4.2, we get that fr is non-zero for
all r ≥ 0. Hence, by Lemma 4.3, the natural map

(τ1 × τ2)
I(1),ψ0 → (τ1 × τ2)N,ψ (4.3)

is injective. However, (τ1 × τ2)N,ψ ≃ τ1 ⊗ τ2 [PR00, Theorem 2.1]. So, dimC(τ1 × τ2)
I(1),ψ0 =

dimC(τ1 × τ2)N,ψ = d1d2. Thus, the map in (4.3) is an isomorphism. □

Proposition 4.4. Let τ be a tamely ramified irreducible representation of D×. The natural
maps

Sp(τ)I(1),ψ0 → Sp(τ)N,ψ

and

St(τ)I(1),ψ0 → St(τ)N,ψ

are isomorphisms.
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Proof. We have the following commutative diagrams:

0 Sp(τ)N,ψ (τν
−1/2
τ × τν

1/2
τ )N,ψ St(τ)N,ψ 0

0 Sp(τ)I(1),ψ0 (τν
−1/2
τ × τν

1/2
τ )I(1),ψ0 St(τ)I(1),ψ0 0

f g h

and

0 St(τ)N,ψ (τν
1/2
τ × τν

−1/2
τ )N,ψ Sp(τ)N,ψ 0

0 St(τ)I(1),ψ0 (τν
1/2
τ × τν

−1/2
τ )I(1),ψ0 Sp(τ)I(1),ψ0 0

h g′ f

where f , g, g′ and h are the natural maps. Since g and g′ are isomorphisms from Theorem
4.1, we get that f is injective and h is surjective from the first diagram and f is surjective and
h is injective from the second diagram. □

Corollary 4.5. Let τ = IndD
×

D×
mD(1)

θ̃ be a d-dimensional tamely ramified irreducible represen-

tation of D×. We then have

dimC St(τ)N,ψ =
d(d− 1)

2
+ d and dimC Sp(τ)N,ψ =

d(d− 1)

2
.

Proof. From the work of Minguez and Secherre [MS14], we find that as K-representations

St(τ)K(1) ≃
⊕

i,j∈Z/dZ
i ̸=j

IndKI (θ̃
qi ⊗ θ̃q

j

)⊕
⊕
i∈Z/dZ

st(θ̃q
i

) and

Sp(τ)K(1) ≃
⊕

i,j∈Z/dZ
i ̸=j

IndKI (θ̃
qi ⊗ θ̃q

j

)⊕
⊕
i∈Z/dZ

θ̃q
i ◦ det( · ),

where det( · ) is the composition of the determinant character of GL2(Fqn) and the natural

surjection K ↠ GL2(Fqn), and θ̃q
i ◦ det( · ) and st(θ̃q

i
) are the two simple factors of the

reducible induction IndKI (θ̃
qi ⊗ θ̃q

i
) (see [NS24, Lemma 4.5]). Hence,

dimC St(τ)I(1),ψ0 = dimC HomI(1)(ψ0, St(τ)
K(1)) =

d(d− 1)

2
+ d

and

dimC Sp(τ)I(1),ψ0 = dimC HomI(1)(ψ0, Sp(τ)
K(1)) =

d(d− 1)

2
.

The corollary now follows from Proposition 4.4. □

Remark 4.6. Twisted jacquet modules for irreducible principal series representation τ1 × τ2
of arbitrary depth is clearly isomorphic to τ1 ⊗ τ2 as D× representation. The dimensions of
tiwsted Jacquet modules for cuspidal can be related to the inducing datum (see...).
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4.2. The D×-action on the twisted Jacquet module. Let τ = IndD
×

D×
mD(1)

θ̃ be a d-

dimensional tamely ramified irreducible representation of D×. Using Proposition 4.4, we
now find the explicit structure of the D×-representation Sp(τ)N,ψ. The analysis depends on
the parity of d.

The space of K(1)-invariants of the principal series τν
−1/2
τ × τν1/2τ as a KD×-representation

is isomorphic to

IndKD
×

ID× (τ ⊗ τ) = IndKD
×

ID×

(
⊕y∈Z/dZWy

)
,

where Wy is an irreducible representation of ID× such that

ResIWy =
⊕

x∈Z/dZ

θ̃q
x ⊗ θ̃q

x+y

.

Lemma 4.7. Let y ∈ Z/dZ. If 2y ̸= 0, then the representation IndKD
×

ID× Wy is irreducible;
otherwise it has two distinct irreducible subrepresentations ρ1 and ρ2. When y ̸= 0 (and
2y = 0), we have ResK ρ1 ≃ ResK ρ2. Moreover,

IndKD
×

ID× Wy ≃ IndKD
×

ID× W−y

for all 2y ̸= 0.

Proof. Applying the Mackey decomposition, we get that

HomKD×(IndKD
×

ID× Wy, Ind
KD×

ID× Wy′) = HomT0D×(Wy,Wy′)⊕ HomT0D×(Wy,W
s
y′),

where W s
y is a T0D

×-representation on the space Wy equipped with the T0D
×-action con-

jugated by s = ( 0 1
−1 0 ). For y ∈ Z/dZ, the representations Wy of T0D

× are distinct and
irreducible. As W s

y is equal to W−y, the lemma follows. □

Let {ei : i ∈ Z/dZ} be a basis of τ consisting of functions ei : D
× → C such that supp(ei) =

o×D ⋊ ϖdZ
D ϖ

i
D and ei(ϖ

i
D) = 1. The (diagonal) character of o×D on the 1-dimensional space

spanned by the vector ei ⊗ ei+y is (θ̃1+q
y
)q

i
. For y ∈ Z/dZ, ResD× Wy is a representation of

D× such that
Reso×D

Wy ≃
⊕
i∈Z/dZ

(θ̃1+q
y

)q
i

with ϖD mapping ei ⊗ ei+y to ei−1 ⊗ ei−1+y for i ̸= 0 and e0 ⊗ ey to θ̃(ϖ2d
D )e−1 ⊗ e−1+y.

4.2.1. d = dimC(τ) is odd.

Proposition 4.8. If d = dimC(τ) is odd, then the D×-representation Sp(τ)N,ψ is isomorphic

to
∧2 τ .

Proof. Let S ⊆ Z/dZ be the subset consisting of elements y’s defined by the condition that
2y ̸= 0 and y ∈ S if and only if −y /∈ S. By the proof of Corollary 4.5 and Lemma 4.7, we
have as KD×-representations,

Sp(τ)K(1) ≃ V ′ ⊕
⊕
y∈S

IndKD
×

ID× Wy,

where ResK V
′ =

⊕
i∈Z/dZ θ̃

qi ◦ det( · ). Considering the ψ0-semi-invariants for the action of

I(1), we get that

Sp(τ)I(1),ψ0 ≃
⊕
y∈S

ResD×Wy.
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The set {ei ⊗ ej − ej ⊗ ei : i, j ∈ Z/dZ and i ̸= j} is a basis for
∧2(τ), whereas the space Wy

is spanned by vectors ei ⊗ ei+y, i ∈ Z/dZ. The map

ei ⊗ ei+y 7→ ei ⊗ ei+y − ei+y ⊗ ei

defines an isomorphism of
⊕

y∈S ResD× Wy with
∧2 τ . □

4.2.2. d = dimC(τ) is even.

As in the proof of Proposition 4.8, we have

Sp(τ)N,ψ ≃ Sp(τ)I(1),ψ0 ≃ V ⊕
⊕
y∈S

ResD×Wy where Reso×D
V ≃

d
2
−1⊕
i=0

(θ̃1+q
d
2 )q

i

. (4.4)

Suppose (θ̃1+q
d
2 )q

k
= θ̃1+q

d
2 with kk′ = d

2
. By Frobenius reciprocity, the D×-representation V

is a sum of k′ copies of the induction IndD
×

o×D⋊ϖkZ
D
(θ̃1+q

d
2 ). When k = 1, the induction is the

character θ̃1+q
d
2 and one needs to analyze the action of ϖD on the underlying space of θ̃1+q

d
2 .

We do this for d = 2 in the remaining part of this subsection.

Let d = dimC(τ) = 2 from now on. We also assume that p > 2. As d = 2, the index of
D is n = 2m and the set S is empty. By (4.4) or by Corollary 4.5, we know that Sp(τ)N,ψ
is a character of D×. The following theorem precisely describes this character generalizing
Theorem 3.1.

Theorem 4.9. The D×-representation Sp(τ)N,ψ is the character (θ ◦ NrD/F )µ(−1)m+1.

Proof. Let f be a non-zero function in Sp(τ)K(1) such that k.f = θ̃(det(k))f for all k ∈ K and
let

t :=

(
ϖD 0
0 1

)
.

Note that tit−1 ∈ K for i ∈ I and thus, it−1f = θ̃(det(tit−1))t−1f , which implies that

t−1f ∈ Sp(τ)I,θ̃
q⊗θ̃. From the decomposition of Sp(τ)K(1) given in the proof of Corollary 4.5,

we find that theK-representation ⟨K ·t−1f⟩ is stable under the action ofD×. We are interested
in the D×-representation on the space ⟨K · t−1f⟩I(1),ψ0 .

The Frobenius reciprocity induces an isomorphism of K-representations

Φ : IndKI (θ̃
q ⊗ θ̃) → ⟨K · t−1f⟩

such that Φ(φ) =
∑

k∈{1,snx} φ(k
−1)kt−1f . Here, {1, snx = ( 0 1

−1 0 )
(
1 [x]
0 1

)
: x ∈ Fq2m} is a set

of representatives for I\K. Let 1I ∈ IndKI (θ̃
q ⊗ θ̃) be the function such that Φ(1I) = t−1f . It

is the function supported on I mapping 1 to 1. Using the operator

T (φ)(k) =
θ(−1)m+1θ(ϖF )

qm

∑
y∈Fq2m

φ(snyϖDkϖ
−1
D )

we make IndKI (θ̃
q ⊗ θ̃) into a representation of KD× such that ϖD acts by T . We claim that

Φ is then an isomorphism of KD×-representations. Indeed, we note that T 2m = θ(ϖF )
2Id

and T corresponds to an intertwining operator in HomK(Ind
K
I (θ̃

q ⊗ θ̃), IndKI (θ̃⊗ θ̃q)) ≃ C. As
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ϖ2m
D acts on ⟨K · t−1f⟩ by the scalar-multiplication by θ(ϖF )

2, there exists a scalar (in fact,
an m-th root of unity) ϵ such that

Φ(T (1I)) = ϵϖDt
−1f.

Expanding the left-hand side of the above, we find that

Φ(T (1I)) =
∑

k∈{1,snx}

T (1I)(k
−1)kt−1f

=
θ(−1)m+1θ(ϖF )

qm

∑
k∈{1,snx}

∑
y∈Fq2m

1I(snyϖDk
−1ϖ−1

D )kt−1f

=
θ(−1)m+1θ(ϖF )

qm

∑
x∈Fq2m

∑
y∈Fq2m

1I(snyϖDnxsϖ
−1
D )sn−xt

−1f

=
θ(−1)m+1θ(ϖF )

qm

∑
x∈Fq2m

∑
y∈Fq2m

1I(sny+xqs)st
−1f

=
θ(−1)m+1θ(ϖF )

qm

∑
x∈Fq2m

st−1f = θ(−1)m+1θ(ϖF )q
mst−1f.

Thus, we have θ(−1)m+1θ(ϖF )q
mt−1f = ϵϖDt

−1f . Evaluating both sides on 1, we obtain that

θ(−1)m+1θ(ϖF )q
mst−1f(1) = ϵϖDt

−1f(1) as det(s) = 1.

This gives

θ(−1)m+1θ(ϖF )q
mf

((
1 0
0 ϖ−1

D

))
= ϵf

((
1 0
0 ϖD

))
.

Using that f ∈ τν−1/2 × τν1/2, we get

θ(−1)m+1θ(ϖF )q
m(id⊗τ(ϖ−1

D )|ϖD|1/4)f(1) = ϵ(id⊗τ(ϖD)|ϖD|−1/4)f(1),

and using that |ϖD| = q−2m and τ(ϖ−1
D ) = τ(ϖD)θ(−1)m+1θ(ϖF )

−1, we conclude

qm/2(id⊗τ(ϖD))f(1) = ϵqm/2(id⊗τ(ϖD))f(1).

Hence, ϵ = 1 and thus

Φ(ϖD1I) = Φ(T (1I)) = ϖDt
−1f = ϖDΦ(1I).

It follows that the KD×-representation ⟨K · t−1f⟩ is isomorphic to IndKI (θ̃
q ⊗ θ̃) with the

ϖD-action on the latter given by T .

By [Gar, Proposition 2.0.10], the D×-representation on the space ⟨K · t−1f⟩I(1),ψ0 is isomor-

phic to θ̃q+1µc, where

c =
θ(−1)m+1θ(ϖF )

qm
G(θ̃q−1, ψ0),

and G(θ̃q−1, ψ0) =
∑

x∈Fq2m
θ̃q−1(x)ψ0(x) is the Gauss sum. On the space of the character

θ̃q+1µc, o×D acts via the character θ̃q+1 and ϖD acts as the scalar-multiplication by c. To
compute the constant c, we need to compute the Gauss sum. Note that, in the Gauss sum,
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ψ0 is viewed as a non-trivial additive character on Fq2m factoring as ψFq ◦ TrFq2m/Fq where

ψFq = ψF |oF . By Hasse-Davenport lifting relation,

G(θ̃q−1, ψ0) = (−1)m+1G(θq−1, ψFq ◦ TrFq2/Fq)
m.

To compute G(θq−1, ψFq ◦ TrFq2/Fq) =
∑

x∈Fq2
θq−1(x)ψFq(TrFq2/Fq(x)), let us fix a set {xi} of

coset representatives for F×
q2/F

×
q . We abbreviate TrFq2/Fq as Tr. Then

G(θq−1, ψFq ◦ Tr) =
∑
xi

∑
y∈F×

q

θq−1(xiy)ψFq(Tr(xiy))

=
∑
xi

∑
y∈F×

q

θq−1(xi)ψFq(Tr(xi)y)

=
∑

xi,Tr(xi)=0

(q − 1)θq−1(xi) +
∑

xi,Tr(xi) ̸=0

−θq−1(xi)

=
∑

xi,Tr(xi)=0

qθq−1(xi)−
∑
xi

θq−1(xi)

=
∑

xi,Tr(xi)=0

qθq−1(xi).

Note that if Tr(x) = Tr(y) = 0 for some x, y ∈ F×
q2 then x and y belong to the same coset in

F×
q2/F

×
q , i.e.,

x
y
∈ F×

q . This is clear because if Tr(x) = Tr(y) = 0 then (x
y
)q−1 = xqy

xyq
= −xy

−xy = 1.

There always exists an element x0 ∈ F×
q2 with Tr(x0) = 0: for F×

q2 = ⟨α⟩, x0 = α
q+1
2 . Hence,

F×
q2/F

×
q has a unique coset of trace 0 elements. Therefore

G(θq−1, ψFq ◦ Tr) = qθ(xq0x
−1
0 ) = qθ(−x0x−1

0 ) = qθ(−1).

Thus,

G(θ̃q−1, ψ0) = (−1)m+1qmθ(−1)m and c = (−1)m+1θ(−ϖF ).

An easy computation then gives that the character θ̃q+1µc is the character θ ◦ NrD/F mul-
tiplied with the unramified character µ(−1)m+1 . Hence, the D×-representation Sp(τ)N,ψ is
isomorphic to (θ ◦ NrD/F )µ(−1)m+1 . □

Remark 4.10. We remark that in contrast with odd d, for d = 2, the above theorem implies
that the D×-representation Sp(τ)N,ψ is isomorphic to

∧2(τ) if and only if θ(−1)m = ωτ (−1) =
(−1)m = (−1)

n
2 . In particular, for the quaternionic division algebra D (i.e. n = 2), the twisted

Jacquet module of Sp(τ) is the exterior square representation
∧2(τ) if and only if the central

character of τ is odd.
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