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Abstract

The fuzzy rule based inference is known to be a useful tool to capture the behavior of an approximate

system in transportation. One of the obstacles of implementing the fuzzy rule based inference, however,

has been to calibrate the membership functions of the fuzzy sets used in the rules. This paper proposes a

way to calibrate the membership function when a set of input and output data is given for the system.
First, the mathematical operations of the fuzzy rule based inference system are represented by a neural

network construction. The operations of each node of this neural network are designed so that they

correspond to specific logical operations of the fuzzy rule based inference system. The values of the

weights of this neural network are set to correspond to the parameters that control the shape and lo-

cation of each membership function. Second, given a set of input–output data, the weights are corrected

sequentially using the principle of the generalized delta rule based back-propagation mechanism. After

correction, the values of the weights are used to specify the exact shape of the membership functions of

the fuzzy sets in the rules. The procedure implements a set of logical rules that can be applied when
calibrating the shapes of the membership functions of a fuzzy inference system. An example, in which the

membership functions of a fuzzy inference model for car-following behavior are calibrated using the real

world data, is shown.
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1. Introduction

The fuzzy rule based inference system has been recognized as a useful approach to model many
complex phenomena in the field of transportation engineering. During the past two decades a
number of papers were published, and also many products, both in software and hardware, were
introduced. Most applications are found in the areas of inference and control in complex be-
havioral systems. The first application to transportation was introduced by Pappis and Mamdani
(1977) on fuzzy controlled traffic signal, and they set the stage for not only the practical math-
ematical operations of fuzzy inference but also opened the door to various transportation ap-
plications. Perhaps the most significant milestone was the successful real world application to the
control of subway vehicles in Sendai, Japan (Sugeno, 1989). Many applications are found in
problems that deals with approximate data and approximate reasoning for causal relationships or
the stimulus–response process. The areas of application are expanding rapidly. We believe that the
fuzzy inference based modeling will play an important role in prediction, diagnosis and control
problems in transportation in the future. Good summaries of the past works are found in
Hoogendoorn et al. (1998), Dijker and Hoogendoorn (1998) and Teodorovic and Vukadinovic
(1998).

A fuzzy rule based inference system consists of a series of ‘‘if x is ~AA then y is ~BB’’ rules, where ~AA
and ~BB are expressed in linguistic terms and represented by fuzzy sets. This type of inference is
suited for modeling systems in which the cause-effect relationships or the logical reasoning pro-
cesses are inherently fuzzy or approximate. This inference mechanism, however, has suffered from
(1) the lack of a procedure that calibrates the membership functions of the fuzzy sets in the rules
logically and systematically; and (2) the lack of procedure that develops the optimum set of rules.
We feel that the latter is not so much of a problem since the expert�s real world experience often
helps in the formulation of a reasonable set of rules, and further, the fuzzy inference system (FIS)
and its mathematical operations themselves are designed to accommodate the uncertainty of the
rule making. On the other hand, the former, determination of the parameter values of the
membership functions have always been problematic because the knowledge of the behavior of
the system cannot be easily translated into the proper shapes of the membership functions in each
rule. This paper develops a procedure that calibrates the membership functions of the fuzzy sets
in the rules systematically and according to some logical guidelines.

The key to the proposed procedure is to represent the FIS by an artificial neural network
(ANN), which is structured such that the parameters of the membership functions of the fuzzy
sets and the logical operations of the inference system are exactly replicated in the weights and the
operations of the neural network. The neural network is so constructed that modifying the
weights of the neural network effect changes in the shape of each membership function. The paper
applies the proposed calibration procedure to a FIS that models a driver�s car-following behavior.
The results, which utilize real world data on car-following behavior, show that the proposed
approach can successfully calibrate the membership functions used in the rules.

The paper is divided into 10 sections, each building foundation for the next. Section 2 explains
the nature of the problem. Section 3 describes the FIS for which the proposed calibration ap-
proach is applicable. Section 4 outlines the principles of the proposed calibration procedure and
presents a set of bases for calibration of FISs. Section 5 introduces the relevant aspects of ANNs.
Section 6 describes in detail how to represent the FIS as an ANN. Section 7 develops the cali-
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bration process for the membership functions using the generalized delta rule based back-prop-
agation learning algorithm and also illustrates how the process implements the bases for modi-
fication discussed in the fourth section. Section 8 describes how to implement the proposed
procedure on a computer for practical applications. This section is followed by presentation of the
results and conclusions.

2. The nature of the problem

A fuzzy rule based inference system (FIS) consists of a series of rules of the following type: ‘‘If x
is ‘‘large’’ then y is ‘‘very fast’’, where the ‘‘if . . .’’ part is called the antecedent and the ‘‘then . . .’’
part is called the consequent of the rule. Expressions like, ‘‘large’’ or ‘‘very fast’’, are fuzzy ex-
pressions and are represented using fuzzy sets. The problem is how to specify (or calibrate) the
shapes of the membership functions of the fuzzy sets systematically such that the behavior of a
particular FIS matches (to a reasonable extent) that of the real world system for which the FIS
attempts to model. It is assumed that the behavior of the real world system is specified through a
set of input–output data.

The traditional approach to calibration has been the intuitive trial and error process, in which
the analyst modifies the shapes of the membership functions little by little until the predicted
output approximately fits the output data obtained from the real world. This approach has
worked well in many cases. However, this process is time consuming, cannot be used when dealing
with a large number of fuzzy sets, and lacks any tenable reasoning.

Wang and Mendel (1992a,b,c) have developed a procedure in which the trial and error process
is made somewhat systematic. This method initially assumes a number of membership functions
for each fuzzy set and selects the one that matches the input data the most. The procedure is
repeated many times to select one of the candidate shapes. This method allows a systematic
computation procedure, however, it still remains in the domain of the trial and error process and
the results depend on the number of membership functions initially assumed.

Other attempts have also been made. For example, Homaifar and McCormick (1995) devel-
oped a genetic algorithm based procedure for FIS calibration. This procedure is an optimization
procedure aimed at improving the performance of the FIS through modification of the mem-
bership functions and rules of the FIS. However, the procedure does not have any logical bases
behind the modification of the membership functions of the FIS; hence, it can be considered as an
efficient trial and error method. Others have developed procedures that are applicable only in
particular situations. For example, Abe and Lan (1995) have developed a procedure that is ap-
plicable for FISs for pattern recognition.

3. The fuzzy rule based inference system being considered

The FIS for which calibration is proposed is presented here. Details of such FISs and the set
operations involved in it are found in a number of references on fuzzy set theory. Among them are,
Baldwin and Pillsworth (1980), Klir and Folger (1988) and Zimmermann (1996). However, in the
following a commonly used form of such a fuzzy rule based inference system is explained briefly.
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3.1. Basic structure

A FIS consists of three elements: input, a set of rules, and conclusion. It has the following
descriptive form (Note that the number of variables in the antecedent need not be three as
shown.):

Input: x is ak, y is bk, and z is ck,
Rules: a set of rules expressed as follows:

Rule 1 : If x is ~AA1 AND y is ~BB1 AND z is ~CC1 THEN d is ~PP1
Rule 2 : If x is ~AA1 AND y is ~BB1 AND z is ~CC2 THEN d is ~PP2

..

. ..
. ..

. ..
. ..

.

Rule r : If x is ~AAi AND y is ~BBj AND z is ~CCq THEN d is ~PPr
..
. ..

. ..
. ..

. ..
.

Rule N : If x is ~AAl AND y is ~BBm AND z is ~CCn THEN d is ~PPN

ð3:1Þ

Conclusion: d is ~DDðkÞ,

where ak, bk, and ck are values for x, y and z, respectively for the kth input vector; ~AAi, ~BBj, and ~CCj in the
rules are the fuzzy sets used to describe the different conditions of x, y, and z in natural language,
respectively; ‘, m, and n are the total numbers of fuzzy sets describing the conditions of the vari-
ables, x, y, and z, respectively; ~PPr in the rules is the fuzzy set describing the consequent of Rule r;
~DDðkÞ is the conclusion given the kth input vector; and N is the total number of rules.
The process of obtaining the conclusion given the input conditions is explained in the following

section.

3.2. Computational details

In the following, the mathematical operations of the fuzzy rule based inference system are
explained step-by-step. These steps are illustrated in Fig. 1.

Step 1: Determine the match between the input and each of the propositions used in the anteced-
ents of the rules. The degree of match between an input condition, say x ¼ ak, and a prop-
osition, say ‘‘x is ~AAi,’’ is measured by the membership value of ak in the fuzzy set ~AAi; that is,
the degree of match is equal to l ~AAi

ðakÞ. In this step, therefore, l ~AAi
ðakÞ for all i, for all i,

l ~BBi
ðbkÞ and for all j, and l ~CCq

ðckÞ for all q are determined.
Step 2: In this step, the truth value (or degree of applicability) for each rule (or more specifically

the antecedent of each rule) for a given input condition is determined. Since the AND op-
erator is used to connect different propositions in the antecedents, the following relation
gives the truth value, wrðkÞ, for Rule r:

wrðkÞ ¼ min l ~AAi
ðakÞ; l ~BBj

ðbkÞ; l ~CCq
ðckÞ

n o
ð3:2Þ

where i, j, and q are such that the fuzzy sets ~AAi, ~BBj, and ~CCq appear in the antecedent of
Rule r.
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Step 3: Amongst the many ways of obtaining the conclusion, in this work the conclusion for the
kth input condition, ~DDðkÞ, is obtained, in principle, through a weighted average of the
consequents, ~PPr�s, of the rules that are ‘‘fired’’ for the kth input vector (i.e., rules with
wrðkÞ > 0). The truth value associated of the rule is taken as the weight of the consequent.
Since, the rules which are not relevant for the kth input condition have a wrðkÞ ¼ 0, in
practice, the following relation can be used to obtain ~DDðkÞ:

~DDðkÞ ¼
XN
r¼1

wrðkÞPN
r¼1 wrðkÞ

 !
~PPr ð3:3Þ

Before proceeding further it may be mentioned that more often than not the fuzzy set obtained
in the conclusion is defuzzified to get a crisp output. This is especially necessary when the FIS
represents an engineering system in which the binary decision is necessary.

A possible way of defuzzification is to obtain a defuzzified value, say q2ðkÞ, such that

l ~DDk
ðq2ðkÞÞ ¼ a where 0 < a6 1 ð3:4Þ

Fig. 1. Illustration of fuzzy rule based inference system.
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If such a defuzzification is done then from the properties of fuzzy arithmetic it can be shown that
one could directly write the following:

q2ðkÞ ¼
XN
r¼1

wrðkÞPN
r¼1 wrðkÞ

 !
qr ð3:5Þ

where qr is such that l ~PPrðqrÞ ¼ a and the value of a is the same as that used in Eq. (3.4).

4. Principles of the proposed calibration procedure

The purpose of calibration is to modify the membership functions of the FIS so that the
outcome predicted by the model is equal (or nearly equal) to the outcome obtained in the real
world. The modification should be done in a logical manner. In the following, first the parameters
of an FIS that affects its conclusion are presented. Next, a set of logical bases for modification of
the FIS is presented. Finally, a representation framework that provides a platform for modifi-
cation of the FIS parameters in consonance with the bases is introduced.

4.1. The parameters of the FIS that affect the conclusion

The factors that dictate the output of the FIS (for a given input vector) are the following:

(i) The parameters which define the membership functions of the fuzzy sets appearing in the
antecedents of the rules.

(ii) The parameters which define the membership function of the fuzzy sets appearing in the con-
sequents of the rules.

(iii) The algebraic operators used for (a) the logical connectives and (b) the determination of the
final inferred value (or the conclusion).

In a wide variety of FIS applications generally three kinds of fuzzy sets are used in representing
the propositions of the antecedents and the consequents of the rules. These are shown in Fig. 2
and are referred to here as Type I unbounded fuzzy sets, Type II unbounded fuzzy sets, and
bounded fuzzy sets.

The membership functions of the sets introduced through Figs. 2(a)–(c) can be respectively
written using the following functions:

Type I unbounded fuzzy set : f ðxÞ ¼ 1

1þ e�w2ðx�w1Þ
ð4:1Þ

Type II unbounded fuzzy set : f ðxÞ ¼ 1

1þ ew2ðx�w1Þ
ð4:2Þ

Bounded fuzzy set : f ðxÞ ¼ 1

1þ e�w21ðx�w11Þ
� 1

1þ e�w22ðx�w12Þ
ð4:3Þ

The values of w2, w21, and w22 above control the gradient of the membership functions as shown in
Fig. 2(d) and are referred to as the gradient parameters. The values of w1, w11, and w12 control the
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placement of the membership function along the x-axis as shown in Fig. 2(e) and are referred to as
the placement parameters. Thus, by manipulating the values of these parameters the shape and
the location of the membership functions can be controlled.

It must be mentioned that the fuzzy sets of the antecedents, ~AAi (for all i), ~BBj (for all j), and ~CCk

(for all k), are represented by the type shown above in our proposed calibration procedure. The
consequents are, however, represented as qr�s because one could use Eq. (3.5) to obtain the output
q2ðkÞ from the FIS.

4.2. Bases for modifying the shape of a membership function

In this section, the bases for modifying the shape of the membership function are described
using the following notation:

T ðkÞ The kth target value obtained from the real world; it is the output value from the real
world for the kth input vector.

q2ðkÞ The output predicted by the FIS model for the kth input vector; also see Eq. (3.5).
wrðkÞ The truth value (or weight) of Rule r, for the kth input vector obtained using Eq. (3.2).
qr The consequent of Rule r.

Consider Fig. 3(a) and (b), each showing the target T ðkÞ, consequent values qr�s of only the
rules that fired for the kth input vector, the associated truth values wrðkÞ�s (written as wr in the
figure), and the corresponding predicted value q2ðkÞ obtained using Eq. (3.5). In Fig. 3(a),
the predicted value, q2ðkÞ (represented by the bold, solid arrow), is smaller than the target value,

Fig. 2. Shapes of the membership functions used and their parameters.
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T ðkÞ (represented by the bold, broken arrow) and hence is found to the left of T ðkÞ. In Fig. 3(b),
the predicted value is greater than the target value and hence is found to the right of the target
value. These figures are provided here so that the reader may readily see the effects of the various
bases for modifying the parameters on q2ðkÞ.

The objective, here, is to make T ðkÞ and q2ðkÞ as close as possible by: (a) modifying the gradient
and placement parameters of the membership functions, so that the wrðkÞ values are adjusted;
and, (b) modifying the values of qr.

Specifically, the bases for modification of the parameters are as follows:

Basis 1: Do not modify any parameter of the fuzzy sets of (a) the antecedent or (b) the consequent
of Rule r, if wrðkÞ ¼ 0.
Reasons: wrðkÞ ¼ 0 means that Rule r did not fire, and hence, it did not play any role in
the determination of the conclusion (or output). Therefore, the mismatch between the
observed value T ðkÞ and the predicted conclusion value q2ðkÞ cannot be attributed to
the parameters of the membership functions of Rule r.

Basis 2: Change the relevant parameter values so as to increase the qr values, if T ðkÞ > q2ðkÞ,
and decrease the values of qr, if T ðkÞ < q2ðkÞ. In other words, in case of Fig. 2(a),
the values of qr should be increased; while in case of Fig. 2(b) the values should be de-
creased.
Reasons: A possible reason for T ðkÞ > q2ðkÞ is that the consequents of the rules that de-
termine q2ðkÞ are less than what they should be; and thus, the value of the consequents
should be increased. The opposite is true for the case when T ðkÞ < q2ðkÞ.

Basis 3: Change the relevant parameters so as to increase the value of wrðkÞ, if
ðqr � q2ðkÞÞ � ðT ðkÞ � q2ðkÞÞ > 0

For example, in case of Fig. 2(a), wr3ðkÞ and wr4ðkÞ should be increased. Similarly, in case
of Fig. 2(b), wr1ðkÞ and wr2ðkÞ should be increased (also see Basis 5).

Fig. 3. Two scenarios in the calculation of q2ðkÞ and its comparison with target value, T ðkÞ.
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Reasons: Suppose T ðkÞ > q2ðkÞ; one of the reasons for T ðkÞ being greater than q2ðkÞ could
be that the rules which provide consequents which are larger than q2ðkÞ are actually more
applicable than their current level of applicability. Therefore, the wrðkÞ values (which in-
dicate applicability of Rule r) of such rules should be increased (by modifying the mem-
bership functions in the antecedents of such rules). On the other hand, suppose
T ðkÞ < q2ðkÞ; one of the reasons for such an occurrence could be that the rules which pro-
vide consequents which are smaller than q2ðkÞ are actually more applicable than their cur-
rent level of applicability. Therefore, the wrðkÞ values of such rules should be increased.

Basis 4: Change the relevant parameters so as to decrease the value of wrðkÞ if
ðqr � q2ðkÞÞ � ðT ðkÞ � q2ðkÞÞ < 0

For example, in case of Fig. 2(a), wr1ðkÞ and wr2ðkÞ should be decreased. Similarly, in case
of Fig. 2(b), wr3ðkÞ and wr4ðkÞ should be decreased (also see Basis 5).
Reasons: Suppose T ðkÞ > q2ðkÞ; one of the reasons for T ðkÞ being greater than q2ðkÞ
could be that the rules which provide consequents which are smaller than q2ðkÞ are actu-
ally less applicable than their current level of applicability. Therefore, the wrðkÞ values of
such rules should be decreased. On the other hand, suppose T ðkÞ < q2ðkÞ; one of the rea-
sons for such an occurrence could be that the rules which provide consequents which are
larger than q2ðkÞ are actually less applicable than their current level of applicability.
Therefore, the wrðkÞ values of such rules should be decreased.

Basis 5: Modify the parameters of the membership function of only that fuzzy set of the anteced-
ent of Rule r which controls the value of wrðkÞ. If two or more fuzzy sets of the anteced-
ent had yielded values close to wrðkÞ then modify the membership functions of each of
these fuzzy sets.
Reasons: The applicability, wrðkÞ, of Rule r is determined by the fuzzy set of the anteced-
ent which yields the least value of the membership grade for the given input condition.
Hence, membership function of only that fuzzy set should be modified. If, however, more
than one fuzzy set yield values close to the minimum value (which is, wrðkÞ), then all the
fuzzy sets which yielded values close to the minimum should be modified.

These are the bases for modifying the parameters of the fuzzy rule based inference system in
this paper. The primary task that remains is the development of a procedure which implements the
bases presented above.

4.3. Representation of the FIS for its modification

Most commonly, the FIS�s are represented in the ‘‘If–then–else’’ format. In order to implement
the modification bases described above, a different representation of an FIS is developed. It is a
multi-layer ANN. This representation has been motivated by the facts that (i) the sigmoid acti-
vation functions (or any such bounded activation functions) of an ANN can aptly represent
membership functions of fuzzy sets, and (ii) the framework of ANNs offer systematic calibration
(learning) mechanisms.

It will be shown that a one-to-one correspondence between the operations of an FIS and
its ANN counterpart can be established. More importantly, it will be proven here that the
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generalized delta rule based back-propagation learning algorithm of ANNs implements the bases
for FIS modification presented in the previous section. The next three sections discuss: how
an ANN can be used to represent the FIS, and how the generalized delta rule based back-
propagation learning mechanism implements the bases for FIS modification, respectively.

5. Relevant aspects of artificial neural networks

The key to the proposed calibration procedure is to represent the fuzzy rule based inference
system as an ANN. This section introduces the features of an ANN that are particularly relevant
to the proposed procedure and the notation used here in describing an ANN. The discussion on
ANNs is kept brief; good discussions can be found in Rumelhart et al. (1986a), Wasserman (1989)
and Hecht-Nielsen (1990) among others.

5.1. Notation and overview of an artificial neural network

An ANN is a parallel distributed processing system as shown in Fig. 4. In the figure, the circles
(nodes) represent the processing units. They are typically grouped into ‘‘layers.’’ The directional
arcs in the figure represent the weighted connections between processing units of adjacent layers.
These arcs transmit the output from one node of a layer to a node of the subsequent layer. A
detailed description of the processing units and the connections is provided later. However, before
that, the notation used here and in later sections is introduced.

Li The ith layer of the neural network; it is conglomeration of nodes generally performing
similar operations.

Netði; J ; kÞ A value residing in node J of the ith layer for the kth input vector. It is obtained by
operating on the inputs to the node.

Varði; J ; kÞ A value residing in node J of the ith layer for the kth input vector. It is obtained by
operating on the netði; J ; kÞ.

Fig. 4. The structure of an ANN model.
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wðI ; J ;KÞ The weight of the link (directional arc) connecting Node J of the ith layer to Node K
of the (I þ 1)th layer. Further, if wði; J ;KÞ is referred to as þwði; J ;KÞ then it means
that the weight can take only positive values; if the weight is referred to with a negative
sign then it means that the weight can take only negative values. If no sign is provided,
then the weight can take any value.

EðkÞ The error (or mismatch) between the target value (observed value) and the predicted value
for the kth input vector.

Typically, an ANN model attempts to capture the relationship between the input and output of
a real world system by:

i(i) Receiving inputs through a layer of nodes (the input layer), processing them in nodes of var-
ious layers (the input layer, the hidden layers and the output layer) connected through the
weighted directional arcs and producing an output; and

(ii) Comparing the output of the ANN with the target (i.e., the desired output); based on the com-
parison, the ANN modifies the weights associated with each directional arc, so that the pre-
dicted output becomes closer to the target. This is called learning.

The topics relevant for understanding the ANN will be discussed. They are: (i) the processing
units (nodes) and the weights of connections, (ii) the pattern of connectivity (i.e., the type of
connections between the nodes), and (iii) the learning mechanism.

5.2. The processing units and the weights of connection

All the computations of an ANN are performed at the nodes. Hence, defining the computations
in each node is crucial to the development of a meaningful ANN. Some of the nodes are used to
represent the concepts that constitute the antecedents of rules, others are used to represent the
truth value of a rule for a particular input vector, and yet others are used as abstract elements in
which meaningful operations are performed.

In Fig. 5, the circle represents a node. Each chamber in the node denotes a process. In the far
left chamber, variables coming in as inputs from the nodes of the previous layer are stored. These
variables then crossover to the middle chamber after being aggregated into a single value,
netði; J ; kÞ. Finally, this value crosses over to the right chamber by transforming to varði; J ; kÞ.
The varði; J ; kÞ is then transmitted through connections emanating from the node to nodes of the
next layer.

The processing units receive inputs from other processing units through some connections.
Associated with each connection is a weight. The output of a node is multiplied with a weight
before it is passed on as input to the node on the next layer. For example, the input to the
processing unit in Fig. 3 are, wði� 1; J1; JÞ � varði� 1; J1; kÞ, wði� 1; J2; JÞ � varði� 1; J2; kÞ, and
wði� 1; J3; JÞ � varði� 1; J3; kÞ.

The inputs are transformed into netði; J ; kÞ through various algebraic operators. In our rep-
resentation of fuzzy inference, two such operators are used. In certain cases, the following
summation operator is used:
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netði; J ; kÞ ¼
X
8j

wði� 1; Jj; JÞ � varði� 1; Jj; kÞ ð5:1Þ

While in other cases, a differentiable approximation of the minimum operator, mð�Þ is used
netði; J ; kÞ ¼ m

8j
ðwði� 1; Jj; JÞ � varði� 1; Jj; kÞÞ ð5:2Þ

The approximation to the minimum operator stated simply is as follows:

mðx; yÞ ¼
x if x6 y � d
y if xP y þ d
/ðx; yÞ if y � d < x < y þ d

8<
:

where /ðx; yÞ is a continuous increasing function which has a value of x and a unit slope with
respect to x at x ¼ y � d, and a value of y and a zero slope with respect to x at x ¼ y þ d.

The transformation of netði; J ; kÞ to varði; J ; kÞ takes place through a function called the ac-

tivation function. Among many types of activation functions, two are of particular interest here;
namely, a linear identity function, and a non-linear bounded function. This function is of the type
f ðnetði; J ; kÞÞ ¼ netði; J ; kÞ; it simply passes the information without altering it, i.e.,
varði; J ; kÞ ¼ netði; J ; kÞ.

The non-linear bounded function, used here, belongs to a class of functions which map the
netði; J ; kÞ to the closed interval [0,1]. The output from such functions can be interpreted as
membership values in fuzzy sets (Williams, 1986). The particular type of function used here is
called the sigmoid function and is given by:

varði; J ; kÞ ¼ f ðnetði; J ; kÞÞ ¼ 1

1þ e�netði;J ;kÞ ð5:3Þ

5.3. Pattern of connectivity

The particular way in which processing units of different layers are connected to one another is
referred to as the pattern of connectivity. This pattern defines the computation process. The issues
related to the pattern of connectivity are: (i) whether a particular processing unit should connect
to another unit, and (ii) if it should, whether the connection should be excitatory (positive weight)
or inhibitory (negative weight).

Fig. 5. Structure of a processing unit showing the notation used.
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5.4. Learning

The process of learning in the ANN amounts to modifying the weight of the connections in
light of the input–output data obtained in real world. The value of the weight may be modified
based on the mismatch (often referred to as the error) between the predicted output and the target.
The way in which the mismatch is utilized to correct the weights is referred to as the learning rule
or correction algorithm. A particular learning rule that is of interest here is the generalized delta

rule based back-propagation learning mechanism. An excellent discussion on this learning mech-
anism is found in Rumelhart et al. (1986b).

This method corrects the weight values proportional to the degree to which the weights affect the
error. Given the existing weight, wði; J ;KÞ, the modified weight, w0ði; J ;KÞ, is obtained as follows:

w0ði; J ;KÞ ¼ wði; J ;KÞ þ Dwði; J ;KÞ ð5:4Þ
where

Dwði; J ;KÞ ¼ gdðiþ 1;K; kÞ onetðiþ 1;K; kÞ
owði; J ;KÞ ð5:5Þ

In this equation, g is the proportionality constant (which defines the step size of a correction to a
weight) and

dðiþ 1;K; kÞ ¼ � oEðkÞ
onetðiþ 1;K; kÞ ð5:6Þ

In general, dði; J ; kÞ, can be written as

dði; J ; kÞ ¼ ovarði; J ; kÞ
onetði; J ; kÞ

X
K2W

dðiþ 1;K; kÞ onetðiþ 1;K; kÞ
ovarði; J ; kÞ ð5:7Þ

where W is the set of nodes in Layer iþ 1 to which Node J of Layer i is connected.
Note, Eq. (5.7) expresses dði; J ; kÞ values for nodes of Layer i in terms of the dð�Þ values of the

subsequent layer, Layer iþ 1.

6. Neural network representation of fuzzy rule based inference system

This section develops the ANN that represents a FIS. An important task is to represent the
membership functions of the fuzzy sets of the FIS in the language of ANNs. Hence, this section
first describes how a membership function can be represented, and later, presents how the entire
FIS can be represented.

6.1. Artificial neural network representation of the membership functions

The three types of membership functions described in Section 4.1 is represented by an ANN in
this section. The procedure used here is derived from the work of Horikawa et al. (1991). A little
thought and the description of the membership functions help in realizing that such membership
functions can be represented by the nodes and arc constructions shown in Fig. 6 (a more detailed
exposition of this development can be found in Chakroborty (1993)).
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Fig. 6(a) shows how a Type I unbounded fuzzy set can be represented in the structure of an
ANN. It is seen that given a value of x, the output from Node 1 of L3 (Layer 3) gives the
membership grade of x in the fuzzy set represented by the membership function:
1=f1þ e�ðþw2Þðxþð�w1ÞÞg (Recall that (þw) means a positive number and ()w) means a negative
number). The following explains how Node 1 of Layer 3 gives the membership grade, as claimed
here, by going through the computations of the nodes of every layer:

Layer 1 Node 1, input x is given; Node 2, input of 1 is given; varði; J ; kÞ for these nodes are equal
to their inputs as these nodes pass on their inputs as their outputs (see Legend of Fig. 6).

Layer 2 Input to this node are x and )w1 times 1; netði; J ; kÞ for this node is obtained by summing
the two inputs and is therefore equal to (x� w1); varði; J ; kÞ for this node is equal to
netði; J ; kÞ as an identity activation function is used in this node.

Layer 3 Input to this node is w2 multiplied by (x� w1); netði; J ; kÞ for this node is equal to the
input as there is only one input; the output from this node (i.e., varði; J ; kÞ for this node)
is equal to 1=f1þ e�w2ð�w1þxÞg as a sigmoid activation function is used here.

The structure shown in Fig. 6(a) can also be used to represent membership functions of Type II
unbounded fuzzy sets. This can be done by simply stipulating that the weight (þw2) should be
()w2); that is the weight can only take negative values as opposed to only positive values.

Fig. 6. Membership function construction by an ANN model.
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Fig. 6(b) shows how a bounded fuzzy set can be represented. Given a value of x, the output
from Node 1 of L4 (Layer 4), gives the membership value of x in the fuzzy set represented by the
membership function: ð1=f1þ e�ðþw21Þðxþð�w11ÞÞgÞ � ð1=f1þ e�ðþw22Þðxþð�w12ÞÞgÞ.

6.2. ANN representation of the entire fuzzy inference system

This section presents a detailed description of the ANN that represents the FIS, described in
Section 3. Specifically, the description is based on the ANN representation of the FIS shown in
Eq. (3.1) with the following characteristics: (i) l ¼ 3, m ¼ 3, and n ¼ 4, (ii) N ¼ 3� 3� 4 ¼ 36,
(iii) ~AA1, ~BB1, and ~CC1 are Type II unbounded fuzzy sets, (iv) ~AA3, ~BB3, and ~CC4 are Type I unbounded
fuzzy sets, and (v) ~AA2, ~BB2, ~CC2, and ~CC3 are bounded fuzzy sets.

Fig. 7. Representation of the FIS described in Section 3 as an ANN model.
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Table 1

Description of the tasks and outputs of the various processing units (nodes) of the ANN representation shown in Fig. 7

Layer Node

number(s)

Characteristics Remarks

(meaning of the output)

L1 1, 3, 5 Similar to Node 1 of L1 of Fig. 6(a) or (b).

(Nodes which receive an external input of 1.)

Each node passes on its input

as its output.

2, 4, 6 Similar to Node 2 of L1 of Fig. 6(a) or (b).

(Nodes which receive the input vector {xk ; yk ; zk}.
That is, Node 2 receives xk , Node 4 receives yk , etc.)

Each node passes on its input

as its output.

L2 1, 5, 9 Similar to Node 1 of L2 of Fig. 6(a)

when it represents Type II unbounded fuzzy set.

4, 8, 14 Similar to Node 1 of L2 of Fig. 6(a)

when it represents Type I unbounded fuzzy set.

2, 6, 10, 12 Similar to Node 1 of L2 of Fig. 6(b).

3, 7, 11, 13 Similar to Node 2 of L2 of Fig. 6(b).

L3 1, 5, 9 Similar to Node 1 of L3 of Fig. 6(a)

when it represents Type II unbounded fuzzy set.

Gives membership in sets, ~AA1, ~BB1,

and ~CC1, respectively.

4, 8, 14 Similar to Node 1 of L3 of Fig. 6(a)

when it represents Type I unbounded fuzzy set.

Gives membership in sets ~AA3, ~BB3,

and ~CC4, respectively.

2, 6, 10, 12 Similar to Node 1 of L3 of Fig. 6(b).

3, 7, 11, 13 Similar to Node 2 of L3 of Fig. 6(b).

L4 1, 3, 4, 6,

7, 10

Units which get a single input (hence

netð�Þ ¼ input) and use an identity

function as the activation function.

Each node passes on its input as its

output.

2, 5, 8, 9 Similar to Node 1 of L4 of Fig. 6(b). Gives membership in sets ~AA2, ~BB2, ~CC2,

and ~CC3, respectively.

L5 1–36 Each node uses mð�Þ to determine netð�Þ
from the inputs it receives. Each of them uses

an identity function as the activation function.

Node 1 receives as input the memberships in sets,
~AA1, ~BB1, and ~CC1; Node 2 receives as input the

memberships in sets, ~AA1, ~BB1, and ~CC2; and so on.

Each gives the truth of a rule

(i.e., wrðkÞ of Eq. (3.2)) for the kth input

vector. For example, Node 1 gives the

truth of Rule 1 (in Eq. (3.1)), Node 2 of

Rule 2, etc.

L6 1–36 Units which get a single input (hence

netð�Þ ¼ input) and use an identity

activation function as the activation function.

Each node passes on its input as its

output.

37 Uses a summation operator to obtain netð�Þ.
Uses an identity function as the activation function.

Gives the sum of all the truth values.

L7 1–36 Receives input from the corresponding node num-

ber of L6 and also from Node 37 of L6. Uses a

division operator (the former upon the latter) to

obtain netð�Þ. Uses an identity function as the

activation function.

Gives the normalized truth values

for all the rules; i.e., each node gives

wrðkÞ=RrwrðkÞ for a given r.

L8 1 Uses a summation operator to obtain netð�Þ. Gives a defuzzified value of the

output from the FIS (i.e., q2ðkÞ) for a
given input vector.
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Fig. 7 shows the ANN structure that exactly replicates the FIS (in Eq. (3.1) with the charac-
teristics mentioned in the previous paragraph).

Each line in Fig. 7 is an arc (connection) leaving from the node to the left and going to the node
on the right. The processes carried out at the various nodes and the weights of the arcs are ex-
plained in Tables 1 and 2, respectively. Table 1 also provides the meanings of the outputs from the
nodes in the Remarks column, wherever applicable. Note that, the nodes are numbered (although

Table 2

Weights on connections between nodes of successive layers in Fig. 7

From layer

(value of i)
From node number(s)

(value of J )
To node number(s)

(value of K)
Weight wði; J ;KÞ

L1 (i ¼ 1) 1 1–4 �wð1; 1;KÞ
2 1–4 þ1

3 5–8 �wð1; 3;KÞ
4 5–8 þ1

5 9–14 �wð1; 5;KÞ
6 9–14 þ1

L2 2–14 except 5 and 9 J þwð2; J ; JÞ
1, 5, 9 J �wð2; J ; JÞ

L3 1, 2 J þ1

4, 5, 6 J � 1 þ1

8, 9, 10 J � 2 þ1

12 9 þ1

14 10 þ1

3 2 )1
7 5 )1
11 8 )1
13 9 )1

L4 1 1–12 þ1

2 13–24 þ1

3 25–36 þ1

4 1–4, 13–16, 25–28 þ1

5 5–8, 17–20, 29–32 þ1

6 9–12, 21–24, 33–36 þ1

7 1, 5, 9, 13, 17, 21, 25, 29, 33 þ1

8 2, 6, 10, 14, 18, 22, 26, 30, 34 þ1

9 3, 7, 11, 15, 19, 23, 27, 31, 35 þ1

10 4, 8, 12, 16, 20, 24, 28, 32, 36 þ1

L5 1–36 J þ1

1–36 37 þ1

L6 1–36 J þ1

37 1–36 þ1

L7 1–36 1 wð7; J ; 1Þ
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not specified in Fig. 7) sequentially from top to bottom; i.e., Node n of a layer refers to the nth
node in that layer from the top.

Table 2 presents the weights of all the connections (arcs) shown in Fig. 7. The table has four
columns. The first column gives the layer from which the arcs emanate. The second column gives the
node number from which an arc emanates, the third column gives the node number (of the im-
mediately subsequent layer) to which the arc connects. The last column gives the weight associated
with the arc described through the first three columns. A ‘‘+’’ before a weight means that the weight
cannot be negative. A ‘‘)’’ sign means that the weight cannot be positive. If no sign is mentioned
then it means that the weight could be any real number. Further, all weights that are stated using the
notation wði; J ;KÞ mean that these weights are variables and are to be calibrated. The rest of the
weights are fixed. If a particular connection between two nodes is not mentioned in the table, then it
means that no connection exists (and should not exist) between these two nodes. Another clarifi-
cation regarding the weights of arcs emanating from Layer 7 needs to be given: note that,
wð7; J ; 1Þ�s, represent qr�s; in fact, wð7; 1; 1Þ, represents q1, wð7; 2; 1Þ, represents q2, and so on.

Fig. 7 together with Tables 1 and 2 describes the ANN that replicates the FIS of Eq. (3.1). The
following description shows how the different layers replicate the different computations of the FIS.

Given the input values of x, y, and z the following operations take place in the ANN:

• Layers 1, 2, 3 and 4, which are constructed from the basic modules presented in Fig. 6, compute
the membership grades of the input vector in each of the 10 (¼ 3þ 3þ 4) fuzzy sets used in the
FIS. This corresponds to the Step 1 explained in Section 3.

• Each node of Layer 5 collects inputs from three different nodes (which represent the member-
ship grades of the input vector in the three different fuzzy sets constituting the antecedent of a
rule). Each node then performs the minimum operation (corresponding to Eq. (3.2)) on the in-
puts it receives. Each node thus provides (as its output) the truth value of the antecedent of a
particular rule. This operation corresponds to Step 2 explained in Section 3.

• Layers 6 and 7 calculate the normalized weight for each Rule, r; the normalized weight of a rule
is the parenthetically enclosed term in Eq. (3.3) (and also in Eq. (3.5)).

• Layer 8 produces the predicted defuzzified output based on Eq. (3.5).

7. Application of the generalized delta rule and bases for calibrating the membership functions

Once the ANN representation of the inference system is complete, we ‘‘train’’ the neural net-
work using the generalized delta rule based back-propagation algorithm. The training involves
correction of the weights. This identifies the weights that ought to be corrected. First, the gen-
eralized delta rule is used to derive the weight modifiers (i.e., amount by which the weights should
be modified or corrected) when there exists a mismatch between the predicted output and the
target. Second, a discussion is provided to show how these weight modifiers implement the bases
(described in Section 4.2) for modification of an FIS.

7.1. Weight modifiers, Dw(i; J ;K)

The main task in determining the Dwði; J ;KÞ terms is to calculate the values of the dði; J ; kÞ
terms. A more detailed and complete derivation of these terms can be found in Chakroborty
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(1993). In order to determine the weight modifiers, first the error term (the differences between the
predicted and the target) needs to be defined. The error term used here is as follows:

EðkÞ ¼ 1
2
ðT ðkÞ � varð8; 1; kÞÞ2 ð7:1Þ

The dði; J ; kÞ terms are determined using the above definition of the error term, the structure of the
ANN described in Section 6.2, and the definition of dði; J ; kÞ given in Eq. (5.7).

The dði; J ; kÞ expressions for the nodes of different layers are provided in the following
Layer 8

dð8; 1; kÞ ¼ T ðkÞ � varð8; 1; kÞ ð7:2Þ
Layer 7

dð7; J ; kÞ ¼ dð8; 1; kÞwð7; J ; 1Þ ð7:3Þ
Layer 6

As explained earlier, this layer is a dummy layer used for clarity of representation. Hence, the
dð6; J ; kÞ values are not calculated.

Layer 5

dð5; J ; kÞ ¼ 1P
8J varð5; J ; kÞ

fT ðkÞ � varð8; 1; kÞgfwð7; J ; 1Þ � varð8; 1; kÞg ð7:4Þ

In order to obtain this expression, the error term of Eq. (7.1) is directly written in terms of
varð5; J ; kÞ and wð7; J ; 1Þ. For a detailed derivation of the above term one may refer to Cha-
kroborty (1993).

Layer 4

dð4; J ; kÞ ¼
X
8K2W

dð5;K; kÞ o

ovarð4; J ; kÞmðvarð4; J ; kÞ; varð4; F ; kÞ; varð4;G; kÞÞ ð7:5Þ

The set W refers to the set of nodes of the fifth layer to which the J th node of the fourth layer is
connected. The node numbers F and G refer to the other two nodes (other than the J th node) of
the fourth layer which also send their outputs to the Kth node of the fifth layer. Note that given a
particular J , the set W can be obtained from Table 2. Further, for a given K 2 W, the F and G
nodes can also be obtained from either Table 2 or Fig. 7.

Layer 3

dð3; J ; kÞ ¼ varð3; J ; kÞð1� varð3; J ; kÞÞdð4;K; kÞ for J ¼ 1; 2; 4; 5; 6; 8; 9; 10; 12; 14
�varð3; J ; kÞð1� varð3; J ; kÞÞdð4;K; kÞ for J ¼ 3; 7; 11; 13



ð7:6Þ

In the above expression the value of K (the node number of Layer 4 to which the J th node of
Layer 3 connects) for a given J can be obtained from Table 2.

Layer 2

dð2; J ; kÞ ¼ dð3; J ; kÞwð2; J ; JÞ ð7:7Þ
The above description of dði; J ; kÞ terms provide the necessary groundwork for developing the
weight modifiers, Dwði; J ;KÞ. Note, only the weight modifiers for the weights of arcs between
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Layers 1 and 2, Layers 2 and 3, and Layers 7 and 8 are computed and presented because all the
other weights in the ANN representation are fixed (refer to Table 2). Recall that the weights being
modified are the ones which represent the parameters of the membership functions of the fuzzy
sets of the FIS.

7.1.1. Weight modifiers for weights from Layer 1 to Layer 2: Dw(1; J ;K)
From Eq. (5.5) and the expression for netð2;K; kÞ (which can be obtained based on the de-

scriptions in the Sections 6.1 and 6.2), the expression for Dwð1; J ;KÞ can be obtained.

Dwð1; J ;KÞ ¼ gdð2;K; kÞvarð1; J ; kÞ ð7:8Þ
Further, note that only the weights emanating from Nodes 1, 3, and 5 of Layer 1 are modified,
because the rest are fixed. For the Nodes 1, 3, and 5, the value of varð1; J ; kÞ is always one. Hence,
the above expression can be simplified to the following:

Dwð1; J ;KÞ ¼ gdð2;K; kÞ ð7:9Þ

7.1.2. Weight modifiers for weights from Layer 2 to Layer 3: Dw(2; J ; J)
From Eq. (5.5) and the expression for netð3; J ; kÞ (which can be obtained based on the de-

scriptions in the Sections 6.1 and 6.2), the expression for Dwð2; J ; JÞ can be obtained.

Dwð2; J ; JÞ ¼ gdð3; J ; kÞvarð2; J ; kÞ ð7:10Þ

7.1.3. Weight modifiers for weights from Layer 7 to Layer 8: Dw(7; J ; 1)
From Eq. (5.5) and the expression for netð8; 1; kÞ (which can be obtained based on the de-

scriptions in the Sections 6.1 and 6.2), the expression for Dwð7; J ; 1Þ can be obtained.

Dwð7; J ; 1Þ ¼ gdð8; 1; kÞvarð7; J ; kÞ ð7:11Þ

7.2. Implementation of the bases for modification of the FIS

This section shows how the bases for modifying the FIS parameters, which was developed in
Section 4.2. Before proceeding further, recall (i) there are five bases (as explained in Section 4.2),
and (ii) the following correspondence between the notation used in Section 4.2 and this section:
the variables qr, q2ðkÞ, and wrðkÞ are wð7; J ; 1Þ, varð8; 1; kÞ, and varð5; J ; kÞ, respectively.

7.2.1. Implementation of Basis 1(b) and Basis 2

Eq. (7.11) shows that the sign of Dwð7; J ; 1Þ is the same as dð8; 1; kÞ since varð7; J ; kÞ is always
non-negative. Therefore, the following can be stated:

When T ðkÞ > q2ðkÞ, then dð8; 1; kÞ is positive, and therefore Dwð7; J ; 1Þ is also positive. Hence,
wð7; J ; 1Þ (or qr) is increased (thus implementing Basis 2).

When T ðkÞ < q2ðkÞ, then dð8; 1; kÞ is negative, and therefore Dwð7; J ; 1Þ is also negative. Hence,
wð7; J ; 1Þ (or qr) is decreased (thus implementing Basis 2).

Further, when a rule does not fire (i.e., when varð7; J ; kÞ ¼ varð5; J ; kÞ ¼ 0), then
Dwð7; J ; 1Þ ¼ 0 and therefore the weights wð7; J ; 1Þ (or qr�s) are left unchanged (thus implementing
Basis 1(b)).

110 P. Chakroborty, S. Kikuchi / Transportation Research Part C 11 (2003) 91–119



7.2.2. Implementation of Basis 1(a), Basis 3, Basis 4 and Basis 5

Recall, the expression for dð4; J ; kÞ given in Eq. (7.5) and the fact that the derivative of
mðv1; v2; v3Þ with respect to v1 takes a value of 0 if v1 is not the minimum, 1 if it is the minimum,
and between 0 and 1 if v1 is very close to the minimum of v2 and v3.

Therefore, it can be stated that if the truth of a particular Rule r (obtained from, say, Node K of
Layer 5) is determined by the membership function of Node J of Layer 4, then the whole of
dð5;K; kÞ is assigned to dð4; J ; kÞ. Similarly, if the truth value is not determined by the membership
function of Node J of Layer 4, then none of dð5;K; kÞ is assigned to dð4; J ; kÞ. Only when it be-
comes difficult to ascertain whether Node J is the sole determinant of the truth value (for example,
when membership values of more than one fuzzy set of the antecedent are very close or equal to the
truth value) then a part of dð5;K; kÞ is assigned to dð4; J ; kÞ (thus implementing Basis 5).

Also, note that the summation in Eq. (7.5) captures the fact that the same membership function
(fuzzy set) appears in many rules and therefore the net effect of Node J should be obtained by
adding all the contributions of this node to the error via its presence in many rules.

Further, from (i) the sign of the part of dð4; J ; kÞ which comes from Node K of Layer 5 is the
same as that of dð5;K; kÞ, (ii) the description of varð2; J ; kÞ, and (iii) Eqs. (7.6), (7.7), (7.9) and
(7.10), it can be shown that:

• If dð4; J ; kÞ > 0 and the membership grade of the input is higher than 0.5, then the slope of the
membership function is made steeper (so as to increase the membership grade). If dð4; J ; kÞ > 0
and the membership grade is less than 0.5, then the slope is made milder (so as to increase the
membership grade).

• If dð4; J ; kÞ > 0, then the crossover point (of the membership function) is shifted to the left or to
the right so as to increase the membership grade of the input. The direction of shift depends on
which half of the membership function is pertinent to the input.

• If dð4; J ; kÞ < 0 then the opposite of the above actions are taken.
• The slope and the crossover point of only the relevant half (i.e., the half in which the given

input lies) of the membership function of a bounded fuzzy set is modified. This is true because
(for bounded fuzzy sets), either dð3; J ; kÞ or dð3; J þ 1; kÞ is 0.

These actions together with the fact that the sign of dð5; J ; kÞ is determined (recall Eq. (7.4))
according to the conditions stated in Basis 3 and Basis 4 assure that these bases are correctly
implemented. One additional condition on dð5; J ; kÞ, that of setting it equal to zero whenever
varð5; J ; kÞ ¼ 0, ensures that Basis 1(a) is also implemented. For a detailed proof of the above one
may refer to Chakroborty (1993).

8. Implementation of the entire calibration process

This section gives an overview of the implementation of the calibration procedure for practi-
cal application. Fig. 8 gives the flowchart of the calibration process. As can be seen from the
flowchart, the calibration process is iterative. In each iteration (in the figure, counter ‘‘I’’, rep-
resents this iteration) all the input–output vectors are presented one at a time. For each of the
input–output vectors all relevant quantities of the ANN are calculated, the error is computed, the
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weight modifiers are determined, and the relevant weights are modified. Once all the input–output
vectors have been presented, and the weights modified, the total error (i.e., the sum of the errors
from each of the input–output vectors) is calculated. If this error, is less than a pre-defined
threshold value, Th, then the calibration process is stopped; otherwise, the next iteration of the
calibration process starts with the presentation of all the input–output vectors once again. Note
that, g of Eqs. (7.9)–(7.11) is kept small so that the system does not over-correct based on the
target from a single input–output vector and thereby create instability in the calibration proce-
dure.

Fig. 8. Flowchart showing the implementation of the calibration process.
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9. Examples

In this section, the proposed method is applied to calibrate the membership functions of a FIS
that performs the complex control task of car-following. The model was developed by the authors
Kikuchi and Chakroborty (1992), Chakroborty (1993), and Chakroborty and Kikuchi (1999).
The situation being modeled using the FIS is as follows; a vehicle pair traveling in the same di-
rection (they are called the leading vehicle (LV) and the vehicle following (FV)) is considered, the
action (in terms of acceleration and deceleration) of the FV is predicted based on the relative
speed between the two vehicles, the current speed of the FV, the distance between the LV and the
FV, and the actions of the LV.

The inputs to the model are the relative speed between FV (following vehicle) and LV (the
leading vehicle), the speed of FV, the distance between LV and FV, and the actions of LV, at an
earlier time. The output of the model is the action of the following vehicle (in terms of acceleration
or deceleration) at the current time. The model is in the ‘‘If the relative speed is ~AA, and the speed of
FV is ~BB, and the distance between LV and FV is ~CC, then the action of FV is ~DD’’, where ~AA, ~BB, ~CC, and
~DD are given in fuzzy sets. Two of the antecedent variables have 6 fuzzy classes (sets) each, and one
has 11 fuzzy classes, whose definition depends on the condition of the factors that change with the
driving condition. There are a total of 396 rules (¼ 6� 6� 11). The parameters of the mem-
bership functions of the fuzzy sets, total 23 (¼ 6þ 6þ 11) are calibrated using the proposed
process.

Real world data on the inputs and the output are collected using an instrumented vehicle ca-
pable of measuring the headway between LV and FV, speeds of LV and FV, and acceleration
(deceleration) of LV and FV at intervals of 20 ms. The input conditions obtained from the real
world data are presented to the FIS model; it then predicts the actions (acceleration/deceleration)
of the FV. The mismatch between the predicted and the actual actions (obtained from the real
world data) is used to calibrate the parameters of the membership functions used in the FIS.

In the rest of this section, the predicted outputs before-calibration and after-calibration are
presented. Four cases are presented here. The first three cases present the results from the cali-
bration procedure using three different drivers (called Subjects 1, 2 and 3). The fourth case pre-
sents results using data from various driving runs with one driver. The changes in the membership
functions after calibration are also shown for the fourth case. Many other cases were tested but
only a sample set is shown here.

9.1. Case I

Fig. 9 plots the observed actions of the FV (in terms of acceleration or deceleration) and the
predicted actions (obtained using the FIS) at every second. In Fig. 9(a) the predicted actions are
from the FIS before calibration and in Fig. 9(b) the predicted actions are from the FIS after
calibration. The predictions from the FIS, is drawn as a band and the observed actions are plotted
as points. The band represents plus–minus 1 ft/s2 to the predicted modal value of the actions of
FV. Because, in the calibration process presented in this example, only the modal value of the
fuzzy sets in the consequents are corrected, their supports (or the bases of the membership
functions) do not change with correction; hence, the width of the band in the figure remains the
same before and after calibration.
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As seen in the figure, before calibration most of the observed values lay outside the predicted
band, after calibration, however, the predicted band houses most of the observed values. This
illustrates that the calibration process is able to modify the membership functions of the FIS
appropriately.

9.2. Case II

Fig. 10 is similar to that of Fig. 9, but the data used here is obtained using a driver different from
the one used in Case I. Fig. 10(a) shows the predicted actions before calibration and Fig. 10(b)
shows the predicted actions after calibration. The same observations as in Case I are made here.

Fig. 9. Predicted pattern of actions of the FV (Subject 1, Experiment 1): (a) before calibration, (b) after calibration.

Fig. 10. Predicted pattern of actions of the FV (Subject 2, Experiment 1): (a) before calibration, (b) after calibration.
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9.3. Case III

Fig. 11 is similar to that of Figs. 9 and 10, but the data used here is obtained using a third
driver. Fig. 11(a) shows the predicted actions before calibration and Fig. 11(b) shows the pre-
dicted actions after calibration. The same observations as in Cases I and II are made here.

9.4. Case IV

This case uses the data from various driving runs by one driver. The data is divided into two
parts, the first part is used to calibrate the model and the second part is to check the performance

Fig. 11. Predicted pattern of actions of the FV (Subject 3, Experiment 1): (a) before calibration, (b) after calibration.

Fig. 12. Predicted actions of the FV (Subject 1, training set): (a) before calibration, (b) after calibration.
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of the calibrated FIS model. Fig. 12 shows the comparison between the observed and predicted
actions, before and after calibration of the FIS. In Fig. 12(a) (where the predicted values are from
the FIS before calibration) the observed values lay outside the 45� band. However, in Fig. 12(b)
(where the predicted values are from the FIS after calibration) the band houses most of the ob-
served values. This again shows that the calibration procedure modifies the membership functions
of the FIS appropriately.

The second part of the data is used to study how well the calibrated FIS model can predict the
actions of the FV, even when the data has not been used in the calibration process. Fig. 13
highlights the fact that once the FIS model is calibrated, it can predict the actions of the FV

Fig. 13. Predicted actions of the FV (Subject 1, checking set).

Fig. 14. Two examples of modified membership functions for categories of distance headway (Subject 1).
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accurately. Most of the points in the figure lie within the 45� band although none of these ob-
served actions are used in the calibration process. This shows that the calibration process makes
meaningful changes to the model, rather than changes that merely allow the model to follow the
data used for calibration more closely.

Figs. 14–17 are presented to show, as an example, the type of changes the proposed procedure
has made to the initial fuzzy sets of in the antecedents and the consequents of the rules by the
calibration process. Each of the first three figures, shows the examples of the changes made to
some of the fuzzy sets of the antecedents during calibration.

Fig. 17 shows the changes made to the modal value of the consequents during calibration. The
line in Fig. 17 is a 45� line; points above the line represent the consequents which are increased and
points below the line represent consequents which are decreased. For the scenario presented in

Fig. 15. Two examples of modified membership functions for categories of relative speed (Subject 1).

Fig. 16. Two examples of modified membership functions for categories of acceleration/deceleration rate of LV

(Subject 1).
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this figure, a total of 97 rules fired and therefore the consequents of these rules are the ones that
have been modified. Upon calibration, on an average, the consequents which suggested acceler-
ation are decreased by 0.57 ft/s2; however, the consequents which suggested deceleration are in-
creased (i.e., to a lesser deceleration rate) by 0.56 ft/s2. Such changes in the consequents are
expected because before calibration, as can be seen from Fig. 12(a), the predicted acceleration/
deceleration rates were generally more than the actual actions of the FV.

10. Conclusions

This paper has developed a procedure that calibrates the membership functions of the fuzzy sets
used in a FIS. The inference system is transformed into an ANN format; in the network, the shape
and placement of the membership functions are controlled by the weights of the connections at
the nodes. Using the generalized delta rule based back-propagation correction mechanism, the
weights are corrected repeatedly in light of a set of input and output data. The final weight values
then represent the calibrated parameters of the membership functions. The procedure was tested
to calibrate the membership functions used in a fuzzy inference model that represents the driver�s
control behavior under car-following.

The paper shows that the membership function of a FIS can be logically and systematically
calibrated. Many problems in transportation are conducive to fuzzy inference modeling due to the
approximate reasoning nature of human behavior such as choice process and driving behavior.
Hence, we hope that what is often perceived as the arbitrary nature of membership calibration,
can no longer be the main deterrence for applying FIS to modeling transportation phenomena.
This procedure will add credibility to the fuzzy inference approach when modeling systems that
involve approximate stimulus–response or cause–effect relationships. The procedure tunes the
membership functions of the fuzzy sets logically based on the real world data. We plan to apply
the FIS to represent causalities involving in the elements of a large-scale civil infrastructure
systems, such as a large port, airport, or urban transport system.

Fig. 17. Modified modal values of the consequences (Subject 1).
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