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In this paper the dispersion of a solute matter in a simpie mucroftuid flow through
a channel has been discussed. The effects of homogencous and heterogeneous reaction
rates have been considered in the analysis using Taylor’s limiting condition and the
cffects of vanious parameters on the cquivalent dispersion cocfficient have been
studied. It is observed that for a given simple microfluid the combined effect of
homogeneous and  heterogeneous chemical reaction is to decrease the equivalent
dispersion coetficient.

1. INTRODUCTION

The dispersion of a solute in fluid flowing through channels/pipes is tmportant
in chemical as well as biological systems. In one of the early studies, Taylor'?
presented a simple mathematical model to study dispersion of a solute through a
fluid. He observed that, relative to a plane moving with the average speed of the
flow, the solute disperses with an equivalent dispersion coefficient which depends
upon (i) the average speed of the flow, (ii) the radius of the tube, and (iii) the
molecular diffusion coefficient. In his analysis, Taylor!" assumed that the solute does
not chemically react with the fluid. However, in a variety of problems in chemical
engineering, diffusion of solute takes place in the presence of irreversible first order
chemical reaction. Therefore, many investigators analyed the dispersion problem by
considering first order homogeneous reaction, under laminar flow conditions. Further,
the wall of the channel may be catalytic, which in turn gives rise to heterogeneous
chemical reaction at the surface. Katz’ discussed the influence of the heterogeneous
chemical reaction catalyzed on the wall of the tube. The combined effects of
homogeneous and  heterogencous chemical reaction for a solute dispersing in
Newtonian fluid flow have been discussed by Walker'!, Solomon and Hudson’, Gupta
and Gupta® and others.

It may be noted that many of the fluids are suspensions of particulate matter in
microscopically continuous fluids. Eringen® introduced the concept of simple
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microfluids to characterize concentrated suspensions of neutrally buoyant deformable
particles in a viscous fluid. Such fluid model can be used 10 rheologically describe
polymer suspensions, normal human blood etc. In the above mentioned investigations
such characterization has not been considered. For a sub class of these microfluids,
known as micropolar fluids, Soundalgekar® studied the dispersion of a solute in the
laminar flow of a micropolar fluid in a channel. In a subsequent paper Soundalgekar
and Chaturani® considered the effect of couple stress on the dispersion of a solute
matter in a pipe flow. Chandra and Agarwal' considered dispersion of solute in a
simple microfluid flow when the first order irreversible chemical reaction in fluid is
taking place. However, they did not consider the effect of chemical reaction catalyzed
at the wall. Hence, in this paper we study the combined effects of homogencous and
heterogencous chemical reaction of a solute in a suspension of neutrally buoyant
particles, which is modelled as a simple microfluid, flowing through a channel.

2. MATHEMATICAL. FORMULATION

We consider here dispersion of a solute in a steady flow of a simple microtluid,
between two parallel plates (distance 2A apart). The flow is assumed to be laminar

. . . . d .
and one-dimensional under a uniform pressure gradient d[: =P (The co-ordinate

system 0-xyz is such that, z-axis hes along the length of the channel and is shown
in Fig. 1). Further we assume that the solute, which is present in small concentration,
diffuses and simultaneously undergoes a first order irreversible chemical reaction in
the fluid under isothermal condition. Thus, the equation for concentration, ¢ is given
by, Gupta and Gupta®, Shukla er al.®
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Here the equation is written by neglecting the axial diffusion and the term
—Kc represents volume rate of disappearance of the solute, 12, is constant molecular
diffusion coefficient, K is the first order homogeneous chemical reaction rate constant
and v is the velocity of the simple microfluid along the z-axis.
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Fig. 1. Geometry of the problem
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Further, assuming that the walls of the channel are catalytic (hence, allow a
heterogeneous chemical reaction) the differential material balance at the walls gives,
Katz®, Gupta and Gupta®.

-D g; - fc at x=h
. @

«Dgi-—fc at x=—h

where, fc gives the surface reaction rate.

Following Taylor' eqn. (1) can be written relative to the axis moving with mean
fluid velocity (v ) which on using the dimensionless variables.

R Q)
becomes,
L e X
Vs average fluid velocity given by,
, h
Ve, f v o (5)

Assuming that the Taylor’s limiting condition is valid i.e. the partial equilibrium
is established in any cross-section of the channel, eqn. (4) reduces to
e 4

h odc -
(,)}.z—mc-ua.z. (v-v) ... (6)

ac . . - dc ,  Kn . .
where 53 8 independent of x v = 0 and m? = - D cnaracterizes the chemical
(¢ [§
reaction rate.
The boundary condition (2) can be rewritten as

¥ e =0 at x= 1
ax T YO at x =
dac _ .M
a;—yc-() at x = —1

hf . . .
where ¢ = D 1s the surface reaction rate constant.

Now to solve the cequation (6) for concentration ¢, we need the expression of

. — - . . . - - . .
velocity v, of the simple microtluid. As, the flow is laminar and one dimensional
we take vo= (0, 0, W2)) and the non-zero components of the gyration tensor v;, as
via (2) and vy, (z) only, Kang and Eringen*. It may be pointed out here that the
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symmetric and skew symmetric parts of the gyration tensor vy, characterize the
deformation and rotation of suspended panticles respectively. Thus, the governing
equations for the flow of simple microfluid in a channel can be writien as, Chandra
and Agarwal'.

’

1 o ' v
14 ’ElV(IS)"’E3(

h yl*'\”“_;l)’hp-() (8)

K, + Ky )V"sn"‘(zz + KV - 2E, + 2E,5) v

’

-E,(‘,; +2v|,31)-() )
(l_<| - R})V”M +(i<-2 - l_(a IV - 2E) + 2E5) vy,
v'
+E3( h +2V“_;])-0. (l(’)

Here v(;3), vj13; are the symmetric and skew-symmetric parts of v,y respectively,
"= - i Ey, E,, E; are dimensionless viscosity coefficients and K
dx | 2 3 y [

are nondimensional simle micro fluid parameters (Chandra and Agarwal'),

The boundary conditions for v, vy, vy are taken as follows, Kang and
Eringen*, Chandra and Agarwal'

(i) v=0; vy = PN R at x =1 ) (I
(") v: - () : V“j) = {) y Vlljl = () at : = {} [

Solving the above equations (8) to (10) along with the boundary conditions (11)
the expressions for v(;3), vj3;;, v can be obtained as (Chandra and Agarwal'),

Ph [ b sinhax b . sinh B ] s
Vuy = oy | 2 +) Gona * 2 U5 sinh 3 - A1)
Ph|_ b sishax b o osinh Y ]
- e I — g i ] - 3
Va 2u ol 2 (H+/1) sinh « * 2 (-5 sinh f§ ()
Ve - I;’: [1-% + d; (cosha - coshux)
+ d, (coshﬁ - cushBI)] . (14

where,

by = [-24,h + (1 +28) g2 Vg1 ha—ga by |
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Thus the average velocity of the fluid is obtained as

sinh «

= Ph*{2 — -
- §+d,[cosha— = )+d_~(cushﬁ—

V= o~ -

2u

sinhﬁ
B

Solving equation (6) using the equations (14), (16) and the boundary conditions
(7), we get

)] .. (16)

[ 6 cosh mx

2, x| .
c=¢ D= s .
m* m- m Fily, m)

. s - _
| sinha, (1 a; cosh cosh a2

- 2 dl P > N L
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+ [ 2meoshmx Fy(moa, B) = 2sinhm Fy(m, a, 3)
,'4 (Y N m)

+2ysinhm Fy (m, . )] (I
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hvy ac Ph?

where, = = =
D oz 2u

Fi(ma,B)=|Fima, §)- : +2 4 cosh
1im, a, 3lm, a, m 22 O
- = 2 da,
Fy(ma, )= e 2 alz_mz.smha,
- = 1{1 2 d, sinh a
Fy(m o, B)= m2{3_m2+ 2 q,

Fo(y.m) =[sinhm {m* +y%} + 2ym coshm |
where, the summation index, i, takes the value 1 and 2

The average solute flux, Q, across the plane which moves with the mean specd
of the flow can be obtained from,

oo - . (18)
Q-thc(x)(v—v)dx.
4]

Substituting the expression of v and v from eqn. (14) and egn. (16) in egn. (18)
we get,

v*h 9 19
2-[-5 k)mmapy "
where,
- 1 sinh & sinh B
Ml(m,a’ﬂ,y)-[3+dl\lal+dzsln5ﬁ}
sinh m - 1 d, sinh a d>sinh B
L5 B m s B g~ G (@ md) " B (B - m)
9
[F5 sinh m — 2, coshm+ = sinhm)
m? m’
F ( B) d| Slnha d3 \th
m. +3m2"6(62—m3)"B(B’-—m3)
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d,sinha,) d Fs( sinh(a, +m) sinh(a,—m)l
+2 I'}(m(lﬁ)( \ )— 2 ( a+m * (a, - m) }]
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1 /1 . 2 2 .
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a a+B a-B a;-m?
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5 -~ 5 2 20
+ [ (@ - m?) (4(1‘ sinh 24, + ) } (20)
1 _ _
and Fi= 2mF,(m,a, B)-2mF-(m, a, ~coshm
5= gy | 20 Fy o T B) = 2mE (m G, B)

{2y Fy(m,a, B)-2y*F, (m,«, B)} sinh m].
Now comparing the equation (19) with the Fick's law of diffusion, namely

e D ac - 21

ez

we pet the cquivalent dispersion coetficient D* with which the solute  dispreses
relative 10 a plane moving with the mean speed of the flow is ubtained as follows:
Vi h? - (22)

D=, M m.a, B, ).

3. RESULTS AND  DISCUSSION

The equations (20) and (22} show that the equivalent dispersion coefficient D*
depends upon the dimensionless parameters : m (chemical reaction rate constant), Y
(surface reaction rate parameter), the viscosity coetficients E,, E;, E; and the
parameters K. The coefficients E, and £, refer to the flexible behaviour of the
microstructure, while E5 characterizes its rigidity i.e. ihe higher the values
of [ £ and | E,
of | £y | mecans more rigid microstructure. The parameters K, depend upon the

concentration of suspended particles and hence for the numerical calculations have
been taken as constants.

would mean more flexible microstructure while higher values

It may be pointed out here, that for the particular case when y = 0 eqn. (17)
reduces to the case of Chandra and Agarwal!, while m = 0 refers o the situation
when the dispersion does not undergo any irreversible chemical reaction in the fluid,
but has surface reaction at the wall.

The cffect of various parameters such as chemical reaction rate constant, m',
surface teaction rate constant, y, and the viscosity coefficients E,, E,, E5 on the
equivalent dispersion coefficient can be scen through the function M, hence this
expression has benn numerically calculated for different sets of values of various
parameters. The results are presented by  choosing the coefficients K's as
Ki=1.1,Ki=10,K; =09 and Ky = 0.6 and A; =A, =0.25.
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Fig. 3. Variation of M; with m for differe;t £, and E>.

with y, becomes more appreciable as m increases (Fig 7).

The effect of various parameters on M, are shown in Figs. 2 to 7. Figures 2-4
show that, for a given simple micro fluid, M, decreases as the chemical reaction rate
constant ‘m’ increases. This effect is enhanced as the surface reaction rate constant,
y, increases. The effect of y on M, is further elaborated in Figs. 5 to 7. It is observed
from these figures that M, shows slight decreases as y increases from 0 to 2 and
then approaches asymptotic value as y is increased beyond 2. This increase in M),
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Fig. 5. Vanation of M, with r for different £ and ks

The effects of simple microfluid parameters in the presence of surface reaction
at the wall are depicted in Figs. 2 to 4(with y = 4.0). These figures show that M|
increases as the viscosity coefficient E, increases, but decreases as the viscosity
coefficient E, and £y increase. However, variation o> M, with £, is not very
significant and is almost negligible for smaller values of £, (Fig. 3). This behzviour
is similar to the case of no surface reaction rate at the wall (y = 0) Chandra and
Agarwal!l. Combined cffects of the viscosity coefficients £, E;, Ey and y for
m = (.5 can also be observed through Figs. 5 10 7
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4. CONCLUSION

The combined effect of homogencous and heterogeneous reaction rate constants
on D* is to decrease it for a given sct of simple microfluid parameters. The decrease
in D* with homogeneous reaction rate becomes more in the presence of surface
reaction on the walls. The equivalent dispersion coefficient decreases as the simple
microfluid parameters E; and E; increases but it increases with the parameter E;.
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