

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by: [Indian Institute of Technology Kanpur]
On: 17 June 2010
Access details: Access Details: [subscription number 919422251]
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Numerical Heat Transfer, Part A: Applications
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713657973

KRYLOV SUBSPACE SOLVERS IN PARALLEL NUMERICAL
COMPUTATIONS OF PARTIAL DIFFERENTIAL EQUATIONS
MODELING HEAT TRANSFER APPLICATIONS
B. V. Rathish Kumara; Bipin Kumara; Shalinia; Mani Mehraa; Peeyush Chandraa; V. Raghvendraa; R. K.
Singhb; A. K. Mahindrab

a Indian Institute of Technology, Kanpur, U.P., India b BARC, Mumbai, India

To cite this Article Kumar, B. V. Rathish , Kumar, Bipin , Shalini, Mehra, Mani , Chandra, Peeyush , Raghvendra, V. ,
Singh, R. K. and Mahindra, A. K.(2004) 'KRYLOV SUBSPACE SOLVERS IN PARALLEL NUMERICAL COMPUTATIONS
OF PARTIAL DIFFERENTIAL EQUATIONS MODELING HEAT TRANSFER APPLICATIONS', Numerical Heat
Transfer, Part A: Applications, 45: 5, 479 — 503
To link to this Article: DOI: 10.1080/10407780490269094
URL: http://dx.doi.org/10.1080/10407780490269094

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713657973
http://dx.doi.org/10.1080/10407780490269094
http://www.informaworld.com/terms-and-conditions-of-access.pdf

KRYLOV SUBSPACE SOLVERS IN PARALLEL
NUMERICAL COMPUTATIONS OF PARTIAL
DIFFERENTIAL EQUATIONS MODELING HEAT
TRANSFER APPLICATIONS

B. V. Rathish Kumar, Bipin Kumar, Shalini, Mani Mehra,
Peeyush Chandra, and V. Raghvendra
Indian Institute of Technology, Kanpur, U.P., India

R. K. Singh and A. K. Mahindra
BARC, Mumbai, India

In this study, parallel numerical algorithms for Krylov methods such as GMRES(k),

Bi-CGM, Bi-CGSTAB, etc., for handling large-scale linear systems resulting from finite-

difference analysis (FDA) and finite-element analysis (FEA) of coupled nonlinear partial

differential equations (PDEs) describing problems in heat transfer applications are dis-

cussed. Parallel code has been successfully implemented on an eight-noded cluster under

ANULIB message-passing library environment. Bi-CGM and ILU-GMRES(k) are found to

give good performance for linear systems resulting from FEA, whereas Bi-CGSTAB is seen

to give good performance with linear systems resulting from FDA.

1. INTRODUCTION

In numerical modeling of heat transfer and fluid flow, one generally employs
numerical schemes based on methods such as finite differences, finite elements, spectral
elements, etc., to solve the associated coupled nonlinear partial differential equations
(PDEs). In such numerical studies PDEs are converted to algebraic systems and
iterative methods are commonly used to solve these large-scale linear systems. These
iterative schemes are classified as stationary and nonstationary methods. In sta-
tionary iterative methods the current value of a variable depends only on the im-
mediate previous level, whereas in nonstationary methods current variable values are
updated based on several of the previous iteration values. Under the first category we
have methods such as Gauss-Seidel, Jacobi, successive overrelaxation (SOR), alter-
nating direction implicit (ADI) scheme, etc. Methods such as conjugate gradient
(CGM), conjugate gradient squared (CGS), conjugate gradient residual (CGR),
biconjugate gradient (Bi-CGM), biconjugate gradient stabilized (Bi-CGSTAB),
generalized minimal residual [GMRES(k)], and quasi minimal residual (QMR)

Received 13 December 2002; accepted 18 August 2003.

Address correspondence to B. V. Rathish Kumar, Department of Mathematics, Indian Institute of

Technology, Kanpur 208016, India. E-mail: bvrk@iitk.ac.in

Numerical Heat Transfer, Part A, 45: 479–503, 2004

Copyright # Taylor & Francis Inc.

ISSN: 1040-7782 print=1521-0634 online

DOI: 10.1080/10407780490269094

479

D
o
w
n
l
o
a
d
e
d

B
y
:

[
I
n
d
i
a
n

I
n
s
t
i
t
u
t
e

o
f

T
e
c
h
n
o
l
o
g
y

K
a
n
p
u
r
]

A
t
:

2
1
:
1
4

1
7

J
u
n
e

2
0
1
0

methods, etc., are based on Krylov subspaces [1, 2] and are nonstationary. Iterative
methods are easy to implement, but the computational efficiency is less robust and
more unpredictable than those of direct methods. To improve the speed of con-
vergence, multigrid methods have been developed [3]. Multigrid methods use several
sets of grids with different coarseness to accelerate the propagation of iteration
information. However, multigrid methods are difficult to implement in programming,
particularly when a complex computational domain is considered. Krylov subspace-
based methods [4] can be implemented independent of grid setup and hence are
desirable in several engineering applications [5–12]. The convergence rates of these
iterative methods can be improved by preconditioning and=or scaling of the equa-
tions. Incomplete L-U (ILU) factorization [1] is one of the popular preconditioners,
which is widely in use. It is well known that not all Krylov subspace-based methods
are equally applicable to all linear systems resulting from finite-element analysis of
PDEs modeling flow and heat transfer processes in heat transfer applications.
Generally the solutions of very large-scale systems resulting in the numerical study of
3-D heat transfer related problems are computationally very demanding and time-
consuming on sequential computing systems. Parallel or distributed computations of
the solution on a cluster of PCs (i.e., on Beowolf clusters) are one of the effective
ways to carry out such large-scale computations. Different Krylov subspaces
methods are amenable to different degrees of parallelism. Hence one has to develop
suitable parallel algorithms and measure their performance.

In this study we investigate the power of various Krylov subspace solvers such
as the conjugate gradient method (CGM), biconjugate gradient method (Bi-CGM),
biconjugate gradient stabilized method (Bi-CGSTAB), generalized minimal residual
method [GMRES(k)] etc., for parallel computation of linear systems resulting from
finite-difference and finite-element analysis of partial differential equations modeling
heat transfer applications. For this purpose, three different test problems in heat

NOMENCLATURE

For Algorithms

A matrix of order n6n in Ax¼ b

system

b right-hand-side vector (dimension

n61)

kmax maximum number of iterations

p search direction used for new

approximation for solution

vector x

PEi Processing element i

r residual vector ð¼ b� AxÞ
u residual vector used in GMRES(k)

algorithm ð¼ b� AxÞ
x solution vector (dimension n61)

kyk 2-norm of vector y of dimension n61,

¼
Pn
i¼1

yi
2

�� ��� �1=2
" #

a step size used in updating the solution

vector in new search direction

b parameter used in updating the search

direction
~bb parameter used in GMRES(k) for

updating residual vector

e given tolerance level

r residual norm ð¼ krk2Þ

Subscripts

k indicates value at the kth iterate

0 indicates initial value

^ indicates dual vector

For Test Problems

Gr* modified Grashof number

Nu Nusselt number ¼
R 1
0 ðqT=qxÞ dx

h i
Ra Rayleigh number (thermal forces=

viscous forces)

T temperature

x, y Cartesian coordinates

c stream function

480 B. V. RATHISH KUMAR ET AL.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
I
n
d
i
a
n

I
n
s
t
i
t
u
t
e

o
f

T
e
c
h
n
o
l
o
g
y

K
a
n
p
u
r
]

A
t
:

2
1
:
1
4

1
7

J
u
n
e

2
0
1
0

transfer applications are considered. The first of these test problems is related to the
nonlinear reaction-diffusion problem and the last two problems are related to con-
vection in porous enclosures under Darcian and non-Darcian assumptions. All the
parallel computations are carried out on eight-noded PC cluster under ANULIB, a
parallel communication interface library. Parallel algorithms and parallel
implementation strategies essential for the distributed computation on a PC cluster
are evolved. The performance of various Krylov subspace solvers is measured in
terms of speed-up and efficiency factors. Further streamline and isotherm contours
depicting the flow and temperature fields are presented. The article is organized
under the following six sections: (1) introduction, (2) Krylov subspace methods, (3)
parallel computing environments, (4) parallelization strategies and algorithms, (5)
test problems and numerical schemes with results and discussion, and (6) conclusions.

2. KRYLOV METHODS AND THE MINIMIZATION PROPERTY

Stationary iterative methods can be expressed in the simple form as xk ¼ Bxk�1þ
C, where neither B nor C depends on iterative count k. Nonstationary methods
minimize at the kth iteration some measure of error over the affine space x0 þ Kk,
where x0 is the initial iterate and Kk is the kth Krylov subspace method defined as

Kk ¼ span fr0;Ar0; . . . ;Ak�1r0g for k � 1

where, the residual r0 is given by r0 ¼ b� Ax0. Details of some commonly used
Krylov methods are provided below.

Conjugate Gradient Method

The CGM is an effective method for symmetric positive-definite systems. The
method proceeds by generating vector sequences of iterates (i.e., successive
approximations to the solution), residuals corresponding to the iterates, and search
directions used in updating the iterates and residuals. In every iteration of the
method, the inner products are found in order to update the scalars which are
defined to make the sequences satisfy certain orthogonal conditions. Details of the
iteration scheme are provided below:

Given A, b, Kmax (maximum number of iterations), e (tolerance) do the
following:

1. Set r0 ¼ b� Ax0, r0 ¼ kr0k22, k ¼ 0.

2. Do while rkð Þ1=2> ekbk2
(a) If k ¼ 0 then p0 ¼ r0,

else bk ¼
rTk rk

rTk�1rk�1
and pk ¼ rk þ bk pk�1

(b) wk ¼ Apk

(c) ak ¼
rTk rk
pTkwk

(d) xkþ1 ¼ xk þ akpk

PARALLEL ITERATIVE SOLVERS IN HEAT TRANSFER APPLICATIONS 481

D
o
w
n
l
o
a
d
e
d

B
y
:

[
I
n
d
i
a
n

I
n
s
t
i
t
u
t
e

o
f

T
e
c
h
n
o
l
o
g
y

K
a
n
p
u
r
]

A
t
:

2
1
:
1
4

1
7

J
u
n
e

2
0
1
0

(e) rkþ1 ¼ rk � akwk

(f) rkþ1 ¼ krkþ1k22
(g) k ¼ kþ 1

Note that the matrix A itself need not be formed or stored; only a routine for
the matrix–vector product is required. It is for this reason that Krylov subspace
methods are often called matrix-free methods.

Biconjugate Gradient Method

The CGM is not suitable for nonsymmetrical systems because the residual
vectors cannot be made orthogonal with short recurrences. The Bi-CGM replaces
the orthogonal sequences of residuals by two mutually orthogonal sequences at the
cost of no longer providing a minimization. Here the update relations are based on A
as well as on AT. Details of the Bi-CGM are provided below.

1. r0 ¼ b� Ax0
2. Select r̂r0
3. For k ¼ 0; 1; 2; . . . until convergence do
3. If k ¼ 0 then

(a) p0 ¼ r0
(b) p̂p0 ¼ r̂r0

else
(c) bk ¼

r̂rTk rk
r̂rTk�1rk�1

(d) pk ¼ rk þ bk pk�1
(e) p̂pk ¼ rk þ bk p̂pk�1

end if

4. ak ¼
r̂rTk rk
p̂pTkApk

5. xkþ1 ¼ xk þ ak pk
6. rkþ1 ¼ rk � ak Apk
7. r̂rkþ1 ¼ r̂rk � ak ATp̂pk

end for

Biconjugate Gradient Stabilized Method

The Bi-CGSTAB was developed to solve nonsymmetrical linear systems while
avoiding the often-irregular convergence pattern of the conjugate gradient squared
method. This method also produces iteratively sequences of approximations xk,
residuals rk, and search directions pk. The scalar ak, bk are computed such that both
Axk and rk are orthogonal to the Krylov subspace KkðAT; r0Þ of order k. Details of
the algorithm are provided below.

1. Compute r0 ¼ b� Ax0 for some initial guess x0
2. Choose r̂r0 (for example, r̂r0 ¼ r0)
3. For k ¼ 0; 1; 2; . . . until convergence do

If ðk ¼ 0Þ then

482 B. V. RATHISH KUMAR ET AL.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
I
n
d
i
a
n

I
n
s
t
i
t
u
t
e

o
f

T
e
c
h
n
o
l
o
g
y

K
a
n
p
u
r
]

A
t
:

2
1
:
1
4

1
7

J
u
n
e

2
0
1
0

(a) p0 ¼ r0
else

(b) bk ¼ ak�1
ok�1

r̂rT0 rk
r̂rT0 rk�1

(c) pk ¼ rk þ bkðpk�1 � ok�1Apk�1Þ

4. ak ¼
r̂rT0 rk
r̂rT0Apk

5. rkþ1=2 ¼ rk � akApk

6. ok ¼
rTkþ1=2Arkþ1=2

Arkþ1=2
� �T

Arkþ1=2
� �

7. rkþ1 ¼ rkþ1=2 � okArkþ1=2

8. xkþ1 ¼ xkþ1=2 þ akpk þ okrkþ1=2
end for

Generalized Minimal Residual Method [GMRES(k)]

The GMRES(k) is an extension of MINRES [1, 2] (which is applicable only to
symmetric systems) to unsymmetrical systems. Like the MINRES, it generates a
sequence of orthogonal vectors, but in the absence of symmetry this can no longer be
done with short sequences; instead all previously computed vectors in the orthogonal
sequence have to be retained. For this reason, ‘‘restarted’’ versions of the method are
used. In the conjugate gradient method, the residuals form an orthogonal basis
for the space Span fr0;Ar0;A2ro; . . .g. In the GMRES(k), this basis is formed
explicitly:

wi ¼ Avi
For k ¼ 1 to i

wi ¼ wi � wi; vkð Þvk

end

viþ1 ¼
wi

kwik

This is modified Gram-Schmidt orthogonalization.
Applied to Krylov sequence (Ak;r0), this orthogonalization is called the

Arnoldi method. The inner product (wi, vk) and kwik are stored in a Hessenberg
matrix. The GMRES(k) iterations are constructed as

xi ¼ xi�1 þ y1v1 þ y2v2 þ � � � þ yivi

where the coefficient yi have been chosen to minimize the residual norm kb� Axik.
The GMRES(k) algorithm has the property that this residual norm can be computed
without the iterate having been formed. Thus, the expensive action of forming the
iterate can be postponed until the residual is deemed small enough. Details of the
GMRES(k) algorithm are provided below.

PARALLEL ITERATIVE SOLVERS IN HEAT TRANSFER APPLICATIONS 483

D
o
w
n
l
o
a
d
e
d

B
y
:

[
I
n
d
i
a
n

I
n
s
t
i
t
u
t
e

o
f

T
e
c
h
n
o
l
o
g
y

K
a
n
p
u
r
]

A
t
:

2
1
:
1
4

1
7

J
u
n
e

2
0
1
0

Given A, b, L, U, k, etol and ‘max, proceed as follows:

e ¼ etolkbk
x0 ¼ 0

(GMRES(k) cycles)

for ‘ ¼ 1; 2; . . . ; ‘max

u1 ¼ b� Ax‘�1; �ee1 ¼ ku1k
u1 u1

u1k k

(GMRES(k) iteration)
for i ¼ 1; 2; . . . ; k
uiþ1 ¼ Aui

(Modified Gram-Schmidt orthogonalization)
for j ¼ 1; 2; . . . ; i
~bbiþ1J ¼ uiþ1; uið Þ
uiþ1 uiþ1 � ~bbiþ1; j uj

(End of Gram-Schmidt orthogonalization)

�hhðiÞ ¼ f~bbiþ1;1; ~bbiþ1;2; . . . ; ~bbiþ1;i; jjuiþ1jjgT; uiþ1 ¼
uiþ1
k uiþ1 k

(Q-R algorithm)
for j ¼ 1; 2; . . . ; i� 1

�hh
ðiÞ
j

�hh
ðiÞ
jþ1

()
 cj sj
�sj cj

� � �hh
ðiÞ
j

�hh
ðiÞ
jþ1

()

(end of j loop)

r ¼ h
ðiÞ
i

� 	2
þ h

ðiÞ
iþ1

� 	2� �1
2

ci ¼
�hh
ðiÞ
i

r
; si ¼

�hh
ðiÞ
iþ1
r�hh

ðiÞ
i r; �hh

ðiÞ
iþ1 0

�eeiþ1 ¼ �si�eei; �eei ci�eei

(end of Q-R algorithm)
Convergence check: if �eeiþ1j j � e exit i loop

(end of GMRES(k) iteration)
Solve for y:

�hh
ð1Þ
1 � � � �hh

ði�1Þ
1

�hh
ðiÞ
1

0 � � � � � � �
� � � � � � � �
0 � � � �hh

ði�1Þ
i�1

�hh
ðiÞ
i�1

0 � � � � 0 �hh
ðiÞ
i

2
666664

3
777775

y1
�
�

yi�1
yi

8>>>><
>>>>:

9>>>>=
>>>>;
¼

�ee1
�
�

�eei�1
�eei

8>>>><
>>>>:

9>>>>=
>>>>;

Updated solution:

x‘ x‘�1 þ
Xi
j¼1

yj uj

Convergence check: if �eeiþ1j j � e, exit ‘ loop
(end GMRES(k) cycle)

Return

484 B. V. RATHISH KUMAR ET AL.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
I
n
d
i
a
n

I
n
s
t
i
t
u
t
e

o
f

T
e
c
h
n
o
l
o
g
y

K
a
n
p
u
r
]

A
t
:

2
1
:
1
4

1
7

J
u
n
e

2
0
1
0

3. PARALLEL COMPUTING ENVIRONMENT

The ANUPAM cluster at the Parallel Computing Lab in the Department of
Mathematics at IIT Kanpur is a homogeneous cluster of eight Intel Pentium III
processors. The configuration of each of these eight PEs is as follows:

Intel Pentium III, Infinity 2000 BT @ 800 MHz Processors
Intel i815e Chipset
256 Kb on dir Cache (ATC)
256 MB SDRAM PC 133 MHz
20 GB Hard disk
10=100 Mbps PCI Ethernet card
ANULIB (Parallel Library)

All eight PCs are sitting on Star-Network provided by Dlink Switch (DES-3225G),
which is a 24-port fast Ethernet switch. Layout of the parallel system is presented in
Figure 1a.

ANULIB is a set of message-passing library calls that are used for com-
munication among the processors sitting on the Dlink-Switch network. These li-
brary calls were developed for Linux OS by the computer division of BARC,
Mumbai, India, in 1992. ANULIB environment supports master–slave paradigms
of parallel programming. In master–slave paradigms, one of the processing ele-
ments (PEs) acts as the master node and the rest of the PEs act as slaves. Under
ANULIB there are two separate sets of programs, one for the master node and
another for the slave nodes. A sample of master–slave programs will be provided
after introducing the ANULIB library calls. The set of library calls under
ANULIB can be divided into four categories: (1) initialization calls, (2) termina-
tion calls, (3) communication calls, and (4) miscellaneous calls. These calls are
explained below.

1. Initialization calls:

m init ð<number of slave nodes>; <slave executable file name>Þ
ðfor master programÞ

s initð Þ ðfor slave programÞ

These commands are used to start parallel environment in the program and are
called in master and slave programs, respectively, before making any of the
communication calls.

2. Termination calls:

m endð Þ ðfor master programÞ
s endð Þ ðfor slave programÞ

These calls are used to close the communication channel and to do some cleanup
action.

PARALLEL ITERATIVE SOLVERS IN HEAT TRANSFER APPLICATIONS 485

D
o
w
n
l
o
a
d
e
d

B
y
:

[
I
n
d
i
a
n

I
n
s
t
i
t
u
t
e

o
f

T
e
c
h
n
o
l
o
g
y

K
a
n
p
u
r
]

A
t
:

2
1
:
1
4

1
7

J
u
n
e

2
0
1
0

3. Communication calls:

send_element(<variable to be sent>, <destination CPU identity>,
data type>)

b_send_element(<variable to be sent>, <data type>)
receive_element(<variable to be sent>, <source CPU identity>,

<data type>)

Figure 1. (a) Detailed layout of eight-noded PC cluster. (b) Pictorial representation of fan-in algorithm.

486 B. V. RATHISH KUMAR ET AL.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
I
n
d
i
a
n

I
n
s
t
i
t
u
t
e

o
f

T
e
c
h
n
o
l
o
g
y

K
a
n
p
u
r
]

A
t
:

2
1
:
1
4

1
7

J
u
n
e

2
0
1
0

send_els(<destination CPU identity>, <number of variables to be sent> ,
<variable1>, <data type>, <variable2>, <data type> , . . .)

b_send_els(<number of variables to be sent>, <variable1>,
data type> , <variable2> , <data type> ,. . .)

receive_els(<source CPU identity>, <number of variables to be
received>, <variable1>, <data type>, <variable2>,
<data type>, . . .)

send_data(<data buffer>, <buffer size>, <destination CPU identity>,
<data type>)

b_send_data(<data buffer>, <size of the buffer>, <data type>)
receive_data(<data buffer>, <size of the buffer>, <source CPU

identity>, <size check>, <data type>).

These communications calls are common to both master and slave programs.
An include file ‘‘mincl.inc’’, should be included in the master file which contains
certain declarations used by these communication calls. The corresponding include
file for slaves is ‘‘sincl.inc’’.

4. Miscellaneous calls:

get_cpu_id()

This call returns an integer value that represents the ID of the processing element.

second() ; second1()

These functions return a double-precision value that represents the CPU time used
by this process from the start.

Sample Fortran Program

(In this program, the master program sends a real number to the slave pro-
cessors. Each of the slave processors, after receiving the number, adds its processor
identity to this number and sends it back to the master. The master processor then
displays it.)

C MASTER PROGRAM
include ‘mincl.inc’ ! include file
real a, b
print*, ‘‘Type a real number’’
read*, a
print*, ‘‘Number of processors:’’
read*, nproc
call m_init(nproc-1, ‘s_sample’) ! initialization call
call b_send_element(a,S_REAL) ! broad sending element ‘a’ to all slave

processors

PARALLEL ITERATIVE SOLVERS IN HEAT TRANSFER APPLICATIONS 487

D
o
w
n
l
o
a
d
e
d

B
y
:

[
I
n
d
i
a
n

I
n
s
t
i
t
u
t
e

o
f

T
e
c
h
n
o
l
o
g
y

K
a
n
p
u
r
]

A
t
:

2
1
:
1
4

1
7

J
u
n
e

2
0
1
0

do i ¼ 1, nproc-1
call receive_element(b, i, S_REAL) ! receiving modified number

from all slave processors
print*, ‘‘ Element received from slave processor:’’, i, ‘‘is:’’,b

end do
call m_end() ! termination call
stop
end

C SLAVE PROGRAM (slave executable file is written as s_sample)
include ‘sincl.inc’ !include file
real a, b
call s_init() ! initialization call
call receive_element(a, 0, S_REAL) ! receiving element a from master

processor whose identity is ‘0’
myid ¼ get_cpu_id()
print*, ‘‘I’m slave processor no.:’’, myid, ‘‘Number received from master

processor is:’’, a
b¼ a þ myid
call send_element(b, 0, S_REAL) ! sending modified element ‘b’
to master

call s_end()
end

The master and the slave programs are compiled using ANUG77 compiler to
generate executable code for master and slave nodes. A machine file called
hostname.par containing the details of the PEs and the corresponding executable
files is prepared prior to execution of the code on PEs.

4. PARALLEL STRATEGIES AND ALGORITHMS

The computations which are amenable to parallelization in the algorithms
discussed earlier are (1) inner product of two vectors, (2) matrix–vector multi-
plication, (3) L2 norm of a vector, (4) summation of two vectors, etc. So, to begin
with, the parallelization of these basic components will be discussed, and later the
actual algorithmic parallelization will be dealt with.

1. Inner Product of Two Vectors (Vector–Vector Multiplication)

Suppose �uu;�vv are two vectors of dimension n61. Then, to find the inner product
h�uu;�vvi ¼

Pn
i¼1 uivi on a cluster of p nodes, the vectors are partitioned into p segments

and are distributed to p processors as follows:

do i ¼ 1; 2; . . . ; p
if (i � (n modulo p)) then

Load_on_PEi ¼ n
p

l m

488 B. V. RATHISH KUMAR ET AL.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
I
n
d
i
a
n

I
n
s
t
i
t
u
t
e

o
f

T
e
c
h
n
o
l
o
g
y

K
a
n
p
u
r
]

A
t
:

2
1
:
1
4

1
7

J
u
n
e

2
0
1
0

else
Load_on_PEi ¼ n

p

j k
endif

enddo

Here PEi denotes the ith processor. Now each of the p processors has vectors local_u,
local_v of size (Load_on_PEi). The inner products of these segments residing in
various processors are determined concurrently by executing the sequential code in
the respective processors as follows:

set local_product ¼ 0
do i ¼ 1, Load_on_PEi

local_product ¼ local_product þ local_u(i)6local vðiÞ
enddo

Once local_product is determined in each of the p processors, these are
communicated to the master node, wherein they are summed to give the actual inner
product.

If p (number of processors) is very large, one may use fan-in strategy or a
parallel reduction algorithm to find the global sum from the local_sums evaluated on
individual processors.

Parallel reduction algorithm (fan-in-strategy). In the fan-in algorithm,
data flow from the leaves of the tree to the root. Given a set of n values
a1; a2; . . . ; an and an associative binary operator (þ), reduction is the process of
computing a1ðþÞa2ðþÞa3ðþÞ � � � ðþÞan. For example, consider the set of integers
f4; 3; 8; 2; 9; 1; 0; 5; 6; 3g. Say that each these integers resides in distinct PEs. Then
parallel reduction process may be described pictorially as in Figure 1b.

2. Matrix–Vector Multiplication

To find the product of An�n and vector un�n, the matrix An�n is row-wise block
partitioned into segments Ai of size (Load_on_PEi)6n and distributed to various
PEs. Also, the whole of the vector un is broadcast by the master PE to all slave PEs.
Now in each of the slaves matrix vector multiplication of the respective matrix
blocks and the vector are carried out.

A1

A2

A3

�
�
�
An

2
66666666666664

3
77777777777775
An�n

�

un�1

In

all

PEs

0
BBBBBBBBBB@

1
CCCCCCCCCCA

un�1

!

Au1

Au2

Au3

�
�
�

Aun

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

Aun�1

PARALLEL ITERATIVE SOLVERS IN HEAT TRANSFER APPLICATIONS 489

D
o
w
n
l
o
a
d
e
d

B
y
:

[
I
n
d
i
a
n

I
n
s
t
i
t
u
t
e

o
f

T
e
c
h
n
o
l
o
g
y

K
a
n
p
u
r
]

A
t
:

2
1
:
1
4

1
7

J
u
n
e

2
0
1
0

3. L2 Norm of a Vector

The L2 Norm of a vector �vv ¼ ðv1; v2; v3; . . . ; vnÞT is denoted by

jj�vvjj2 ¼
Xn
i¼1

v2i

 !1=2

¼ ð�vv:�vvÞ1=2

It is determined in the same manner as the inner product of vectors, i.e., based on
block partition of the vectors.

4. Summation of Two Vectors

If �uu and �vv are two vectors, then, to determine �ww ¼ �uuþ �vv, we do the block
partition of the two vectors and distribute the segments to various processors. Now
the summation of these segments is carried out concurrently on all the processors.

Parallelization of CGM Solver under Master–Slave Programming
Paradigm

Given A, b, Kmax (max no. of iterations), e (tolerance), do the following:

1. Master PE reads the order of matrix n, the matrix An�n, vector bn�1, x0 n�1,
Kmax, and e.

2. Master node broadcasts the control data, i.e., order of matrix (n), number
of processors (nprocs), and vector x0, to all the slave nodes (nprocs-1 slave
nodes).

3. Based on the block partition strategy, both master and slave nodes
calculate load distribution on various nodes of the parallel system

4. Master node segments the matrix An�n and vector bn�1 as per the load
distribution identified in step 3 and sends the segmented blocks of A
ðA ¼ ½A1 A2 � � �Ai � � �Anprocs�1A0�TÞ and bðb ¼ ½b1b2 � � � bi � � � bnprocs�1b0�TÞ,
where each segment Ai and bi are of size Load_on_PEi6n and
Load_on_PEi61, respectively.

5. Calculate �rri ¼ �bbi � Ai�xx0 on PEi, where 0 � i � nprocs� 1, and

�rr ¼ �rr1�rr2 � � � �rri � � � �rrnprocs�1�rr0

 �T

:

6. Observe r0 ¼ �rr:�rrð Þ1=2¼
Pnprocs�1

i¼0 �rri:�rrið Þ
� 	1=2

¼
Pnprocs�1

i¼0 r0i

� 	1=2
. Now to

calculate r0, calculate r0i ¼ �rri �rrið Þ1=2 on PEi and use the fan-in algorithm to
get r0 on master node.

7. Set k ¼ 0 on all nodes.
8. Let �pp ¼ ½�pp1 �pp2 � � � �ppnprocs�1 �pp0�T, where �ppi is the segment block of �pp residing

in PEi.
8. If (k ¼ 0) then

set �ppi ¼ �rri i.e. pið jÞ ¼ rið jÞ on ith PE for 1 � j � Load on PEi

5. else

490 B. V. RATHISH KUMAR ET AL.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
I
n
d
i
a
n

I
n
s
t
i
t
u
t
e

o
f

T
e
c
h
n
o
l
o
g
y

K
a
n
p
u
r
]

A
t
:

2
1
:
1
4

1
7

J
u
n
e

2
0
1
0

calculate bk ¼ rTk rk=r
T
k�1rk�1 on master node and broadcast bk to all

nodes.
4. Now set pi ¼ �rri þ b pi i.e. pið jÞ ¼ �rrið jÞ þ b pið jÞ on all nodes.
4. Gather the segments of update vector �pp ¼ ½�pp1 �pp2 � � � �ppnprocs�1 �pp0�T on master

and broadcast �pp to all slaves.
9. Calculate �wwi ¼ ALoad on PE

i
�n � �ppn�1 on PEi so that �wwkn�1 ¼ ½�ww1 �ww2 � � �

�wwnprocs�1 �ww0�T is available in segments on various PEs
10. Calculate �ppTi �wwi ¼

PLoad on PEi

j¼1 �ppið jÞ�wwið jÞ on PEi, 0 � i � nprocs� 1 and
communicate the same to master node.

11. Calculate �ppTi �wwi ¼
Pðnprocs�1Þ

i¼0 �ppi �wwi on master node and set ak ¼
rT
k
rk

pT
k
wk
. Now

broadcast ak to all slaves.
12. Set �xxi ¼ �xxi þ a�ppi on PEi, 0 � i � nprocs� 1 so that the solution vector

�xxkþ1 ¼ ½�xx1 �xx2 � � � �xxnprocs�1�xx0�T is updated by concurrently updating segments
�xxLoad on PEi�1 on PEi.

13. Set �rri ¼ �rri � a �wwi on PEi, 0 � i � nprocs� 1 so that the residual vector
�rrkþ1 ¼ ½�rr1 �rr2 � � � �rrnprocs�1�rr0�T is updated by concurrently updating segments
�rriLoad on PEi�1

on PEi.
14. Calculate rkþ1i ¼

PLoad on PEi

j¼1 ðrið jÞ � rið jÞÞ on PEi and communicate the
same to master node.

15. Calculate rk ¼
Pnprocs�1

i¼0 rki on the master node.
16. Set k ¼ kþ 1 on all PEs
17. Test for convergence of solution, i.e., ðrkþ1Þ

1=2 > ejjbjj2 on master node. If
the solution has converged, communicate the message to all slave nodes
and terminate the slave and master programs after storing the solution.
Otherwise communicate the message of program execution to all the nodes
and go to step 8 in all nodes. Continue the execution until convergence is
reached.

Parallelization of GMRES(k) Solver under Master–Slave Paradigm

Let An�n; bn�1; ‘max; k; etol be given. The various steps involved in the parallel-
ization of GMRES(k) algorithm are as follows:

1. Master node reads the order of matrix ðnÞ, k (re-start value of GMRES(k)
iteration), ‘max (max number of GMRES(k) cycles), and the number of
processing elements (nprocs) and broadcasts the same to slaves.

2. Master node reads the asymmetric matrix An�n and bn � 1 and partitions A
and b such that A ¼ ½A1 A2 � � �Ai � � �Anprocs�1 A0�T; b ¼ ½b1 b2 � � � bi � � �
bnprocs�1 b0�T. Here each segment of Ai and b is of size Load_on_PEi6n,
Load_on_PEi61, respectively.

3. Master node sends the block partitioned ALoad on PEi�n; bLoad on PEi�1 to node
PEi.

4. Calculate jj�bbjj2 concurrently with appropriate master–slave communica-
tions.

5. Set �xx ¼ ð0; 0; . . . ; 0Þ on all PEs.
6. For ‘ ¼ 1; 2; . . . ; ‘max (GMRES(k) cycle)

PARALLEL ITERATIVE SOLVERS IN HEAT TRANSFER APPLICATIONS 491

D
o
w
n
l
o
a
d
e
d

B
y
:

[
I
n
d
i
a
n

I
n
s
t
i
t
u
t
e

o
f

T
e
c
h
n
o
l
o
g
y

K
a
n
p
u
r
]

A
t
:

2
1
:
1
4

1
7

J
u
n
e

2
0
1
0

6.1. Calculate �uu1 ¼ �bb� A�xx‘�1 concurrently on all PEs based on the
respective blocks of data ALoad on PEi�n; bLoad on PEi�1 and the vector �xx.

6.2. Evaluate �ee1i ¼ ð�uu1i ; �uu1iÞ on PEi for 0 � i � nprocs� 1 and send the
same to PE0 so that �ee1 ¼ ð�ee11 ; �ee12 ; . . . �ee1nprocs�1 ; �ee10Þ ¼
Pnprocs�1

i¼0 �uu1i ; �uu1ið Þ
�1=2 ¼ j�uu1j jj can be evaluated on PE0, where �uu1i and

�ee1i denote the segments of vector �uu1 and �ee1, respectively, of size Loa-
d_on_PEi on processor PEi.

6.3. Broadcast �uu1k k to all PEs and set �uu1iðjÞ ¼ �uu1iðjÞ= �uu1k k for
1 � j � Load on PEi and 0 � i � nprocs� 1, i.e., u1 ¼ u1=ku1k con-
currently on all PEs based on respective blocks of data.

6.4. Gather �uu1 on the master node and broadcast the same to all nodes.
6.5. For i ¼ 1; 2; . . . ; k (GMRES(k) iteration begins)

6.5.1. Calculate �uuiþ1îi ¼ Aîi�uuiîi ; 0 � hati � nprocs-1
(modified Gram Schmidt orthogonalization)
for j ¼ 1; 2; . . . ; i

Calculate ~bbiþ1;jîi ¼ �uuiþ1îi ; �uujîi
� �

on PEîi for 04 îi4 nprocs-1

6.5.2. Gather ~bbiþ1;jîi from all PEs on master and calculate ~bbiþ1;j ¼Pnprocs-1
îi¼0

~bbiþ1;jîi and broadcast ~bbiþ1;j to all PEs.

6.5.3. Calculate on each PEîi, for 0 � îi � nprocs-1; �uuiþ1îi ¼
�uuiþ1îi � ~bbiþ1;j�uujîi , where each of vectors �uuiþ1îi is of size
(Load_on_PEîi� 1).
(end of Gram-Schmidt orthogonalization)

6.6. On each PEîi; 0 � îi � nprocs-1 calculate uiþ1îi
�� �� ¼ ð�uuiþ1îi :�uuiþ1îiÞ and

gather uiþ1îi from all PEs on master node.
6.7. Now calculate kuiþ1k ¼

�Pnprocs-1
îi¼0 uiþ1îi

�� ��2Þ1=2 on master node and
broadcast kuiþ1k to all nodes.

6.8. In the master node set �hhðiÞ ¼

~bbiþ1;1; . . . ; ~bbiþ1;i; uiþ1k kgT.

6.9. On each PEîi; 0 � îi � nprocs-1, set �uuiþ1îi ¼ ð�uuiþ1îi=kuiþ1kÞ
6.10. (Q-R algorithm)

(Carry out sequentially in master node)
6.10.1. for j ¼ 1; 2; . . . ; i� 1

�hh
ðiÞ
j

�hh
ðiÞ
jþ1

8<
:

9=
;

cj sj

�sj cj

" # �hh
ðiÞ
j

�hh
ðiÞ
jþ1

8<
:

9=
;

(end j loop)

6.10.2. r ¼ �hh
ðiÞ
i

� 	2
þ �hh

ðiÞ
iþ1

� 	2� �1=2
6.10.3. cj ¼ �hh

ðiÞ
i =r

6.10.4. sj ¼ �hh
ðiÞ
iþ1=r

6.10.5. �hh
ðiÞ
i r

6.10.6. h
ðiÞ
iþ1 0

6.10.7. �eeiþ1 �si�eei
6.10.8. �eei �ci�eei
(end of Q-R algorithm)

492 B. V. RATHISH KUMAR ET AL.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
I
n
d
i
a
n

I
n
s
t
i
t
u
t
e

o
f

T
e
c
h
n
o
l
o
g
y

K
a
n
p
u
r
]

A
t
:

2
1
:
1
4

1
7

J
u
n
e

2
0
1
0

6.11. Carry out convergence check, i.e., check if j�eeiþ1j < e in master node. If
yes, then convey the message to all PEs and exit the GMRES(k)
iteration loop from all PEs. Otherwise continue the GMRES(k)
iteration loop execution in all PEs.

6.12. (end of GMRES(k) iteration)
6.12. Solve for �yy in master node by back substitution of the following upper

triangular system:

�hh
ð1Þ
1 � � � �hh

ði�1Þ
1

�hh
ðiÞ
1

� � � � � �

� � � � � �

0 � � � �hh
ði�1Þ
i�1

�hh
ðiÞ
i�1

0 � � � 0 �hh
ð1Þ
i

2
6666666664

3
7777777775

y1

�

�

yi�1

yi

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
¼

�ee1

�

�
�eei�1

�eei

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

6.12. This step can be executed out concurrently using slave PEs, but it is
not scalable. No big gain has been noticed in parallelizing this step, as
the size of the system is k� k and a generally practical choice of is
k � 25.

6.13. Broadcast �yy from master node to all PEs.
6.14. Update �xxîi on all PEîi for 0 � îi � nprocs-1 as follows:

�xxîi �xxîi þ
Xi
j¼1

yj � �uujîi 1 � i � Load on PEîi

6.15. Check for convergence, i.e., if j�eeiþ1j � e on master node, and broadcast
the result to all PEs. If the convergence criterion is satisfied, then exit
from GMRES(k)-cycle loop in all PEs and terminate the parallel
execution after storing the solution. Otherwise continue the parallel
execution of GMRES(k)-cycle loop.

5. TEST PROBLEMS

Three heat transfer problems, namely, (1) the non-linear reaction-diffusion
problem [13], (2) free convection in a vertical porous enclosure under Darcian
assumptions [14, 15], and (3) free convection in a vertical porous enclosure under
non-Darcian assumptions [16, 17], are considered to test the parallel algorithms,
implementation strategies, and to study the performance of Krylov subspace solvers
in solving linear systems obtained by either finite-difference or finite-element analysis
of partial differential equations modeling these heat transfer applications. The details
of the mathematical model and the numerical schemes employed in reducing the
PDEs to algebraic systems are given below.

PARALLEL ITERATIVE SOLVERS IN HEAT TRANSFER APPLICATIONS 493

D
o
w
n
l
o
a
d
e
d

B
y
:

[
I
n
d
i
a
n

I
n
s
t
i
t
u
t
e

o
f

T
e
c
h
n
o
l
o
g
y

K
a
n
p
u
r
]

A
t
:

2
1
:
1
4

1
7

J
u
n
e

2
0
1
0

Problem 1: Nonlinear Reactive-Diffusive Problem

The governing equation describing the reactive-diffusive process in
O ¼ fðx; yÞ j 0 � x; y � 1g is

q2T
qx2
þ q2T

qy2
þ A exp � E

RT

� �
¼ 0 ð1Þ

with the boundary conditions

qTðx; 0Þ
qy

¼ 0 Tðx; 1Þ ¼ 500
qTð0; yÞ

qx
¼ 0 Tð1; yÞ ¼ 500 ð2Þ

The reaction parameters are chosen as in [13], i.e., A ¼ 10, E=R ¼ 10; 000. The
governing equation (1) is simplified and rewritten as

TH2Tþ AT ¼ AE

R
ð3Þ

A finite-difference scheme, based on a five-point stencil at a typical grid point ði; jÞ,
1 � i; j � N; is given by

ð�4Tn
i;j þ Ah2ÞTnþ1

i;j þ Tn
i;jðTnþ1

iþ1;j þ Tnþ1
i�1;j þ Tnþ1

i;jþ1 þ Tnþ1
i;j�1Þ ¼

AE

R
h2 ð4Þ

At the grid point ð1; jÞ, ði; 1Þ corresponding to the boundaries x ¼ 0; y ¼ 0, scheme
(4) is suitably modified in accordance with the Neumann boundary conditions.
Dirichlet boundary conditions prescribed on the boundaries x ¼ y ¼ 1 are in-
corporated by setting temperature values at the grid points ði;NÞ, ðN; jÞ for
1 � i; j � N, to the corresponding Dirichlet prescriptions.

The linear system resulting from (4) is solved by Bi-CGM, Bi-CGSTAB, and
GMRES(k) methods on an eight noded PC cluster based on the parallelization
strategies. Performance of these Krylov subspace methods is measured in terms of
speedup and efficiency factors, and the results are provided in Figures 2a and 2b.
Here one may note that the speedup is defined as the ratio of time taken to run the
code on a single machine to the time taken to run the parallel code on n machines
(i.e., Sp ¼ T1=Tn). Efficiency factor is defined as Ef ¼ Sp=n, i.e., (speedup=no. of
nodes).

In Figure 2a, the speedup factor achieved by Bi-CGM, GMRES(k), and
Bi-CGSTAB methods on an eight-noded PC cluster is presented. For these com-
putations, a linear system of size (26103)6(26103) has been considered. Here one
may note that for current test data size, speedup factors associated with Bi-CGSTAB
are relatively larger when the number of processing elements is less than five. For
PEs greater than five, speedup factors associated with GMRES(k) are relatively
larger. The tapering nature of speedup factor curves and the decrease in efficiency
level with increasing number of processors may be attributed to the smallness in the

494 B. V. RATHISH KUMAR ET AL.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
I
n
d
i
a
n

I
n
s
t
i
t
u
t
e

o
f

T
e
c
h
n
o
l
o
g
y

K
a
n
p
u
r
]

A
t
:

2
1
:
1
4

1
7

J
u
n
e

2
0
1
0

F
ig
u
re

2
.
(a
)
S
p
ee
d
u
p
a
n
d
(b
)
effi

ci
en
cy

co
m
p
a
ri
so
n
p
lo
ts

fo
r
n
o
n
li
n
ea
r
re
a
ct
io
n
d
iff
u
si
o
n
p
ro
b
le
m
.
(c
,
d
)
S
p
ee
d
u
p
p
lo
ts

w
it
h
in
cr
ea
si
n
g
d
a
ta

si
ze

fo
r
B
i-
C
G
M
.
(e
,
f
)

B
i-
C
G
S
T
A
B
.
(g
)
T
em

p
er
a
tu
re

d
is
tr
ib
u
ti
o
n
.

495

D
o
w
n
l
o
a
d
e
d

B
y
:

[
I
n
d
i
a
n

I
n
s
t
i
t
u
t
e

o
f

T
e
c
h
n
o
l
o
g
y

K
a
n
p
u
r
]

A
t
:

2
1
:
1
4

1
7

J
u
n
e

2
0
1
0

data size. In Figure 2b, the efficiency factors are presented. Here one may notice that
with the current data size on eight nodes, GMRES(k) works at an efficiency of 78%.
However, the efficiency of other two solvers falls drastically, due to the smallness in
data size. To investigate performance of the solvers with increasing data size, linear
systems of size 1,60061,600, 2,50062,500, and 3,60063,600 are considered and
parallel computations are carried out on four and eight nodes. Speedup factors re-
sulting from these parallel computations have shown that the performance improves
with increasing data size. In Figures 2c–2f, speedup factors with increasing data size
are presented through histogram plots. In Figures 2c and 2d performance of the
Bi-CGM solver with increasing data size on eight and four processors is depicted. In
Figures 2e and 2f, performance of Bi-CGSTAB with increasing data size on eight
and four PEs is depicted. In these plots, the lengths of the boxes represent the ex-
pected speedup factors whereas the lengths of the shaded portion of the boxes re-
present the achieved speedup factors. Clearly, with increasing data size, performance
of the Bi-CGM and Bi-CGSTAB solvers improves dramatically due to effective
cache management. For large data size, Bi-CGSTAB gives super linear speedup.
Performance of GMRES(k) also increases with data size. As the problem size grows,
the rate of computation to communication will grow and thus the parallel efficiency
will increase.

In Figure 2g, temperature distribution obtained from parallel simulation on
eight nodes is presented. Here the color bar denotes the temperature values. As
expected, the temperature distribution is quite symmetric about the left vertical wall
of the geometry. Solution is in agreement with the expected isotherm pattern.

Problem 2: Free Convection in a Vertical Porous Enclosure Under
Darcian Assumptions

Study of natural convection in a vertical porous enclosure has generated great
interest among researchers due to its significance in several scientific and engineering
applications, e.g., thermal insulation, geothermal reservoirs, nuclear waste man-
agement, grain storage, etc. The nondimensional form of equations governing the
conservation of momentum and energy for steady two-dimensional flow in a
homogeneous and isotropic porous medium under Darcian assumptions are [13, 14]

q2c
qx2
þ q2c

qy2
¼ qT

qy
ð5Þ

qc
qy

qT
qx
� qc

qx
qT
qy
¼ 1

Ra

q2T
qx2
þ q2T

qy2

� �
ð6Þ

with boundary conditions

c ¼ 0;T ¼ 1 on y ¼ 0 (on left vertical wall)

c ¼ 0;T ¼ 0 on y ¼ 1 (on right vertical wall)

c ¼ 0;
qT
qx
¼ 0 on x ¼ 0; 1 (top and bottom walls)

ð7Þ

496 B. V. RATHISH KUMAR ET AL.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
I
n
d
i
a
n

I
n
s
t
i
t
u
t
e

o
f

T
e
c
h
n
o
l
o
g
y

K
a
n
p
u
r
]

A
t
:

2
1
:
1
4

1
7

J
u
n
e

2
0
1
0

The coupled nonlinear partial differential equations (5), (6) together with (7)
are solved by the Galerkin finite-element method. The linear system resulting by
assembling element matrices is solved by GMRES(k), ILU-GMRES(k), Bi-CGM,
and Bi-CGSTAB Krylov subspace methods.

Owing to the nonlinear nature of the problem, both sequential and parallel
code take about 28 global iterations. Each global iteration is associated with inner
iterations. These inner iteration counts differ from solver to solver. For instance,
Bi-CGM has about 40–80 inner iterations during each of its 28-outer=global itera-
tions. GMRES(k) solver is seen to run with about 20–25 inner iterations per
GMRES(k) cycle and 3–4 GMRES(k) cycles per outer=global iteration. Each of the
global iterations in the current investigation is associated with a linear system of
order 1,92261,922. Thus matrices of order (26103) are repeatedly solved 28 times
to achieve a solution to an accuracy of 10�4 on relative error of field variables. To
check the correctness of sequential code, results of the sequential code are compared
with those from literature and found to be in good agreement [18, 19]. Next, to
validate the parallel code, error data from inner iterations of sequential computation
are compared with those from parallel computation and they are found to be in
perfect agreement. As a sample, in Figures 3a–3d, error data from sequential and
parallel execution associated with Bi-CGM and GMRES(k) solvers are compared.

In Figures 3a and 3b, error data associated with the second outer iteration of
BICGM solver for Ra¼ 100 is presented. Figure 3a shows data corresponding to the
first 50 iterations and Figure 3b shows data corresponding to the next 32 iterations.
At all inner iteration levels, sequential and parallel error data match perfectly. In
Figures 3c and 3d, sequential and parallel execution error data associated with the
1st, 7th, and 28th outer=global iterations of GMRES(k) solver are compared. Again
we find that the error data from both the executions are in perfect agreement.
Further, one may also note that each of these outer=global iterations, under both
sequential and parallel executions, has about five GMRES(k) cycles. These calcu-
lations corresponding to GMRES(k) solver are carried out for Ra¼ 75. Next, the
error data corresponding to sequential and parallel execution of ILU-GMRES(k)
solver are compared in Figure 3d. Here the data corresponding to the 1st, 7th, and
28th outer iterations are compared. Again a perfect match in the data from sequ-
ential and parallel execution can be noted.

Finally, the temperature and flow field corresponding to results from parallel
execution on eight nodes are presented in Figures 4a–4d. In Figures 4a and 4b,
isotherms corresponding Ra¼ 75, 250 are presented, and in Figures 4c and 4d,
streamlines corresponding to Ra¼ 75, 250 are presented. Isotherm plots 4a and 4b
clearly show the manifestation of a thermal boundary layer along the left vertical
wall as Ra is increased from 75 to 250. Streamline plots in Figures 4c and 4d depict a
change in flow structure with an increase in Ra. These results are very much in
accordance with the results reported earlier in the literature [13, 14].

In Figure 5a, speedup factors corresponding to Bi-CGM, Bi-CGSTAB,
GMRES(k), and ILU-GMRES(k) are presented. Here one may note that Bi-CGM
solver is superior to other solvers. ILU-GMRES(k) is also seen to perform well.
However, owing to the smallness in data size, speedup factor curves slowly taper as
the number of processing elements increases. In the case of ILU-GMRES(k), such
tapering has not been noted. This is because with the ILU-GMRES solver,

PARALLEL ITERATIVE SOLVERS IN HEAT TRANSFER APPLICATIONS 497

D
o
w
n
l
o
a
d
e
d

B
y
:

[
I
n
d
i
a
n

I
n
s
t
i
t
u
t
e

o
f

T
e
c
h
n
o
l
o
g
y

K
a
n
p
u
r
]

A
t
:

2
1
:
1
4

1
7

J
u
n
e

2
0
1
0

ILU-factorization cost is rather large. In Figure 5b, efficiency factors associated with
the parallel execution of the four solvers are presented. Clearly, Bi-CGM solver is
seen to perform with super linear speedup with over 100–150% efficiency. ILU-
GMRES(k) is seen to perform with nearly a linear speedup factor and at a level of
100% efficiency. The other two solvers are about 70% and 40% efficient.

Problem 3: Free Convection in a Vertical Porous Enclosure Under
Non-Darcian Assumptions:

Equations governing the flow and convection in a non-Darcian porous en-
closure are [16]

Figure 3. Error data for sequential and parallel executions for (a) Bi-CGM fixing Ra¼ 100 up to 50 inner

iterations; (b) continuation of plot in (a) after 50 inner iterations choosing small scale for error axis; (c)

GMRES for Ra¼ 75; (d) ILU-GMRES for Ra¼ 75.

498 B. V. RATHISH KUMAR ET AL.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
I
n
d
i
a
n

I
n
s
t
i
t
u
t
e

o
f

T
e
c
h
n
o
l
o
g
y

K
a
n
p
u
r
]

A
t
:

2
1
:
1
4

1
7

J
u
n
e

2
0
1
0

F
ig
u
re

4
.
T
em

p
er
a
tu
re

co
n
to
u
rs

in
D
a
rc
ia
n
ca
se

w
h
en

(a
)
R
a
¼
7
5
,
(b
)
R
a
¼
2
5
0
w
it
h
(c
,
d
)
co
rr
es
p
o
n
d
in
g
st
re
a
m
li
n
es
.
T
em

p
er
a
tu
re

co
n
to
u
rs

in
n
o
n
-D

a
rc
ia
n
ca
se

(G
r*
¼
0
.7
5
)
w
h
en

(e
)
R
a
¼
7
5
,
(f
)
R
a
¼
2
5
0
,
w
it
h
(g
,
h
)
co
rr
es
p
o
n
d
in
g
st
re
a
m
li
n
es
.

499

D
o
w
n
l
o
a
d
e
d

B
y
:

[
I
n
d
i
a
n

I
n
s
t
i
t
u
t
e

o
f

T
e
c
h
n
o
l
o
g
y

K
a
n
p
u
r
]

A
t
:

2
1
:
1
4

1
7

J
u
n
e

2
0
1
0

F
ig
u
re

5
.
(a
)
S
p
ee
d
u
p
a
n
d
(b
)
effi

ci
en
cy

fa
ct
o
r
co
m
p
a
ri
so
n
p
lo
ts
w
h
en

R
a
¼
1
0
0
,
G
r*
¼
0
.0
,
er
ro
r
d
a
ta

fo
r
B
i-
C
G
M

fi
x
in
g
G
r*
¼
0
.2
5
,
R
a
¼
5
0
fo
r
1
0
th

o
u
te
r
it
er
a
ti
o
n
,

(c
)
u
p
to

5
0
in
n
er

it
er
a
ti
o
n
s,
a
n
d
(d
)
a
ft
er

5
0
it
er
a
ti
o
n
s.
(e
)
S
p
ee
d
u
p
a
n
d
(f
)
effi

ci
en
cy

co
m
p
a
ri
so
n
p
lo
ts

w
h
en

G
r*
¼
0
.5
,
R
a
¼
1
0
0
.

500

D
o
w
n
l
o
a
d
e
d

B
y
:

[
I
n
d
i
a
n

I
n
s
t
i
t
u
t
e

o
f

T
e
c
h
n
o
l
o
g
y

K
a
n
p
u
r
]

A
t
:

2
1
:
1
4

1
7

J
u
n
e

2
0
1
0

q2c
qx2
þ q2c

qy2
þGr� � q

qx
qc
qx

� �2

þ q
qy

qc
qy

� �2
" #

¼ qT
qy

ð8Þ

qc
qy

qT
qx
� qc

qx
qT
qy
¼ 1

Ra

q2T
qx2
þ q2T

qx2

� �
ð9Þ

with boundary conditions

c ¼ 0;T ¼ 1 on y ¼ 0

c ¼ 0;T ¼ 0 on y ¼ 1

c ¼ 0;
qT
qx
¼ 0 on x ¼ 0; 1

9>>>=
>>>;

ð10Þ

Equations (8)–(10) are solved by the Galerkin finite-element method. Here again the
global matrix of size 1,92261,922 resulting from assembly of element matrices is
solved by GMRES(k), Bi-CGM, Bi-CGSTAB, and ILU-GMRES(k).

To begin with, the error data from sequential and parallel executions are
compared. As a sample, in Figures 5c and 5d, sequential and parallel execution error
data from the 10th global=outer iteration of the Bi-CGM solver are compared. One
may note that they are in perfect agreement. Such a comparison is made for the error
data from other solvers too, and they are found to be in good agreement. Next the
results in the form of isotherm and streamlines for Ra¼ 75,250, Gr*¼ 0.75 as ob-
tained from parallel computation on eight nodes are presented in Figures 4e–4h.
Figures 4e and 4f clearly depict the manifestation of a thermal boundary layer along
the left vertical wall. Figures 4g and 4h depict a variation in flow structure with
increasing Ra. Further, one may also compare Figures 4a and 4b with Figures 4e and
4f, and similarly Figures 4c and 4d with Figures 4g and 4h to check the influence of
Gr*. Clearly, Gr* is seen to intensify the flow circulation and also sharpen the
thermal boundary layer. These results are very much in tune with those reported in
literature [15, 16].

In Figures 5e and 5f, speedup and efficiency factors associated with the
parallel executions corresponding to Ra¼ 100, Gr*¼ 0.5 are presented. Here again
one can notice that the Bi-CGM is seen to perform better than the other solvers,
with super linear speedup factors. ILU-GMRES(k) is seen to have a nearly linear
speedup factor and is seen to scale very well with the increase in number of
processing elements. It may also be noted that speedup factors associated with
Bi-CGM are seen to saturate with the increase in number of nodes, and this may
be attributed to the smallness in size of the data. However, ILU-GMRES(k) is seen
to scale up linearly. GMRES(k) in the absence of preconditioners is found to be
not so efficient. In the presence of ILU preconditioner, it is seen to be 90% effi-
cient. The performance of Bi-CGSTAB is better than that of GMRES(k) but is
clearly inferior to that of ILU-GMRES(k) and Bi-CGM. The deterioration in the
efficiency of BICGM may be attributed to the smallness in the data size. Again, an
increase in data size enhances the speedup factors as observed in the case of the
reaction-diffusion problem.

PARALLEL ITERATIVE SOLVERS IN HEAT TRANSFER APPLICATIONS 501

D
o
w
n
l
o
a
d
e
d

B
y
:

[
I
n
d
i
a
n

I
n
s
t
i
t
u
t
e

o
f

T
e
c
h
n
o
l
o
g
y

K
a
n
p
u
r
]

A
t
:

2
1
:
1
4

1
7

J
u
n
e

2
0
1
0

6. CONCLUSIONS

Distributed or parallel algorithms together with parallel implementation stra-
tegies for a cluster of eight PCs under ANULIB message-passing libraries has been
developed for Krylov methods for linear systems such as GMRES(k), Bi-CGM,
Bi-CGSTAB, and ILU-GMRES(k). Parallel code has been developed for all these
iterative solvers and has been successfully employed in solving linear systems re-
sulting from finite-difference=finite-element analysis of heat transfer-related mathe-
matical models. For the linear systems resulting from FEA of coupled nonlinear
PDE models governing convection in porous enclosure, Bi-CGM and ILU-
GMRES(k) solvers are seen to give good speedup factors with an efficiency over
90%. For the linear system resulting from finite-difference analysis of the reaction-
diffusion problem, with large data size, Bi-CGSTAB is seen to perform well. The
relative merit of linear solvers can perhaps be more explained by looking at the
eigenvalue distributions of the different linear systems. In general, with increase in
data size, speedup and efficiency factors scale very well with the increase in the
number of processing elements.

REFERENCES

1. Y. Saad, Iterative Methods for Sparse Linear Systems, PWS, Boston, 1995.

2. C. Pommerell, Solution to Large Unsymmetric Systems of Linear Equations,
Hartung-Goore Verlag, Konstanz, 1992.

3. A. Brandt, Multi-level Adaptive Solutions to Boundary Value Problems, Math. Comput.,

vol. 31, pp. 333–390, 1977.
4. Y. Saad, Krylov Subspace Methods on Super Computers, SIAM J. Sci. Stat. Comput.,

vol. 10, no. 6, pp. 1200–1232, 1989.

5. F. Shakib, T. J. R. Hughes, and Z. Johan, A Multi-element Group Preconditioned
GMRES(K) Algorithm for Nonsymmetric Systems Arising in Finite Element Analysis,
Comput. Meth. Appl. Mech. Eng., vol. 75, pp. 415–456, 1989.

6. T. J. R. Hughes, I. Levit, and J. Winget, Element-by-Element Solution Algorithm for

Problems of Structural and Solid Mechanics, Comput. Meth. Appl. Mech. Eng., vol. 36,
pp. 241–254, 1983.

7. Y. Eguchi and G. Yagawa, A Conjugate-Residual FEM for Incompressible Viscous Flow

Analysis, Comput. Mech., vol. 3, pp. 59–72, 1988.
8. P. Carriere and D. Jeandel, A 3D Finite Element Method for the Simulation of Thermo

Convective Flows and Its Performance on a Vector Parallel Computer, Int. J. Numer.

Meth. Fluids, vol. 12, pp. 929–946, 1991.
9. A. Farcy and T. A. de Roquefort, Chebyshev Pseudospectral Solution of the

Incompressible Navier-Stokes Equations in Curvilinear Domains, Comput. Fluids, vol.

16, no. 4, pp. 459–473, 1988.
10. G. B. Deng, J. Piquet, P. Queutey, and M. Visonneau, Three-Dimensional Full Navier-

Stokes Solvers for Incompressible Flows past Arbitrary Geometries, Int. J. Numer. Meth.
Eng., vol. 31, pp. 1427–1451, 1991.

11. K. Chen, Conjugate Gradient Methods for the Solution of Boundary Integral Equations
on a Piecewise Smooth Boundary, J. Comput Phys., vol. 97, pp. 127–143, 1991.

12. H. W. Lin, Numerical Simulation of the Dynamics and Instability of Flame Flicker

when Subject to Perturbed Boundary Conditions, Ph.D. dissertation, Department of
Mechanical Engineering, University of Iowa, Iowa City, IA, 1993.

502 B. V. RATHISH KUMAR ET AL.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
I
n
d
i
a
n

I
n
s
t
i
t
u
t
e

o
f

T
e
c
h
n
o
l
o
g
y

K
a
n
p
u
r
]

A
t
:

2
1
:
1
4

1
7

J
u
n
e

2
0
1
0

13. Hsiao-Wen Lin and Lea-Der Chen, Application of the Krylov Subspace Method to

Numerical Heat Transfer, Numer. Heat Transfer A, vol. 30, pp. 249–270, 1996.
14. B. V. Rathish Kumar and Shalini, Natural Convection in a Thermally Stratified Wavy

Porous Enclosure, Numer. Heat Transfer A, vol. 43, pp. 753–776, 2003.

15. D. Angirasa, G. P. Peterson, and I. Pop, Combined Heat and Mass Transfer by Natural
Convection in a Saturated Thermally Stratified Porous Medium, Numer. Heat Transfer A,
vol. 31, pp. 255–272, 1997.

16. F. C. Lai and F. A. Kulacki, Non-Darcy Convection from Horizontal Impermeable

Surfaces in Saturated Porous Medium, Int. J. Heat Mass Transfer, vol. 30, no. 1,
2189–2192, 1987.

17. B. V. Rathish Kumar and Shalini, Natural Convection in a Thermally Stratified

Non-Darcian Vertical Porous Enclosure, J. Porous Media (In press).
18. K. L. Walker and G. M. Homsy, Convection in a Porous Cavity, J. Fluid Mech., vol. 87,

pp. 449–474, 1978.

19. O. V. Trevisan and A. Bejan, Natural Convection with Combined Heat and Mass
Transfer Buoyance Effects in Porous Medium, Int. J. Heat Mass Transfer, vol. 28,
pp. 1596–1611, 1985.

PARALLEL ITERATIVE SOLVERS IN HEAT TRANSFER APPLICATIONS 503

D
o
w
n
l
o
a
d
e
d

B
y
:

[
I
n
d
i
a
n

I
n
s
t
i
t
u
t
e

o
f

T
e
c
h
n
o
l
o
g
y

K
a
n
p
u
r
]

A
t
:

2
1
:
1
4

1
7

J
u
n
e

2
0
1
0

