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Abstract

In this paper, a nonlinear mathematical model is proposed to study the depletion of dissolved oxygen in a water body caused by
industrial and household discharges of organic matters (pollutants). The problem is formulated as a food chain model by considering
various interaction processes (biodegradation and biochemical) involving organic pollutants, bacteria, protozoa, an aquatic population
and dissolved oxygen. Using stability theory, it is shown that as the rate of introduction of organic pollutants in a water body increases,
the concentration of dissolved oxygen decreases due to various interaction processes. It is found that if the organic pollutants are
continuously discharged into water body, the concentration of dissolved oxygen may become negligibly small, thus threatening the
survival of aquatic populations. However, by using some effort to control the cumulative discharge of these pollutants into the water
body, the concentration of dissolved oxygen can be maintained at a desired level.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

It is well known that pollutants and toxicants discharged in water bodies are harmful to biological species such as a
fish population [10,15,19,22,23]. When household and industrial wastes are discharged into water, the organic matter
present in them are uptaken by micro-organisms which convert them into inorganic matter using dissolved oxygen in the
process. The density of these micro-organisms (bacteria) increases as the cumulative concentration of organic pollutants
increases. As these are part of a food chain involving protozoa and other biological populations in a water body, the
level of dissolved oxygen decreases further due to various interactive biochemical and biodegradation processes. It may
be noted here that the input of the dissolved oxygen in a water body is mainly due to atmospheric diffusion through the
water surface and to a certain extent due to its production by photosynthesis [13,10,18–20]. Therefore, while modeling
the depletion of dissolved oxygen in an aquatic ecosystem, all these processes should be taken into account [9].

The study of effect of the organic pollutants on dissolved oxygen in a water body started with the well-known model of
Streeter and Phelps [21]. Several workers including Dobbins [3], O’ Connor [14], Beck andYoung [1] have generalized
this model. It may be pointed out here that these models are only linear. However, there exist various nonlinear
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processes in water bodies involving interactions such as organic pollutants with bacteria [6,11,15], phytoplankton with
zooplankton in presence of nutrients [2,8], organic chemical distribution in aquatic food chains [22], dissolved oxygen
with aquatic populations [15], etc. For a case related to organic pollutants, Rinaldi et al. [15] proposed ecological type
nonlinear models involving fast and slow biodegradable pollutants, which implicitly consider the depletion of dissolved
oxygen by bacteria and protozoa in a water body. In this study, where simulation analysis has been carried out, several
questions regarding the behavior of the nonzero equilibrium including nonlinear stability, etc. remained unanswered.
Further some other aspects, such as natural depletion rates of pollutants, crowding of species, growth of oxygen from
algae and macrophytes, survival of aquatic population dependent on dissolved oxygen, etc. have not been taken into
account in various nonlinear modeling studies. It may be also pointed out here that, the level of dissolved oxygen can
be increased by pumping air into the water body, being used for production of fish, and therefore, this aspect needs
also to be considered in the modeling process.

In this paper, therefore, a nonlinear ecological type of mathematical model for the depletion of dissolved oxygen
in a water body is proposed and analyzed by considering some of the aspects mentioned above involving degradable
organic pollutants, bacteria, protozoa and an aquatic population. This model takes into account monod interactions
between organic pollutants and bacteria, bacteria and protozoa and a bilinear interaction between protozoa and the
aquatic population. It is assumed that a constant rate of input of oxygen is applied into the water body, to increase the
level of dissolved oxygen [13,18,19]. A model to control the discharge of organic pollutants and its effect on dissolved
oxygen is also proposed and analyzed.

2. Mathematical model

We consider a water body where organic pollutants are discharged in the form of wastes. It is assumed that these
pollutants are part of a food chain consisting of bacteria, protozoa and an aquatic population, (for example a fish
population) using dissolved oxygen in this water body for various biochemical and biodegradation processes.

Let, T be the cumulative concentration of organic matter (degradable pollutants), B be the density of the bacteria, P
be the density of the protozoa, N be the density of an aquatic population, which depends wholly on protozoa and C be
the concentration of the dissolved oxygen (DO). It is assumed that the cumulative discharge of organic pollutants into
the water body is at a constant rate Q and that the rate of decrease of concentration T due to biochemical and other
factors is proportional to T. It is further assumed that the cumulative rate of depletion of T due to bacteria is given by a
monod type of interaction involving the density of bacteria B as well as the concentration T (i.e. TB/(K12 + K11T )).
As bacteria wholly depend upon organic pollutants, the growth rate of density of its population is proportional to this
term. It is considered that the natural depletion rate of density of bacteria is proportional to B and the decrease of its
growth rate due to crowding is proportional to B2. Further, the depletion rate of density of bacteria by its predator
protozoa is assumed to be given by the monod interaction between bacteria and protozoa (i.e. BP/(K21 + K22B)).
Thus, the growth rate of protozoa density is also proportional to this interaction term. The natural depletion rate of
protozoa density is assumed proportional to P while its decrease due to crowding is proportional toP 2. The depletion
rate of protozoa density by its predator such as a fish population is assumed proportional to (PN) and therefore the
corresponding growth rate of density of this predator population is proportional to this product. The natural depletion
rate of density of predator population is considered proportional to N and its decrease due to crowding is proportional
to N2. It is also assumed that the rate of growth of concentration of dissolved oxygen by various sources including
diffusion, pumping of air into the water body, etc. is q (a constant) and its natural depletion rate is proportional to C. It is
assumed, further, that the rate of depletion of dissolved oxygen is proportional to various terms (K1TB/(K12 +K11T ),
K2BP/(K21 + K22B), K3PN, �1B, �2P, �3N ) representing growth and depletion rates [15].

Keeping in mind the above considerations, the system is governed by the following differential equations:

dT

dt
= Q − �0T − K1TB

K12 + K11T
,

dB

dt
= �1

K1TB

K12 + K11T
− �1B − �10B

2 − K2BP

K21 + K22B
,
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dP

dt
= �2

K2BP

K21 + K22B
− �2P − �20P

2 − K3PN, (2.1)

dN

dt
= �3K3PN − �3N − �30N

2,

dC

dt
= q − �4C − �34K3PN − �11�1B − �22�2P − �33�3N − �12

K1TB

K12 + K11T
− �23

K2BP

K21 + K22B
,

where T (0) = T0 �0, B(0) = B0 �0, P(0) = P0 = P0 �0, N(0) = N0 �0, C(0) = C0 �0.
In model (2.1) the constants �10, �20, �30 are crowding coefficients (flaking off coefficients [15] ) of bacteria, protozoa

and the aquatic population, respectively. The parameters K1, K2, K3, K11, K12, K21, K22 involved in the monod type
interactions are all constants. The coefficients �1, �2, �3, �11, �22, �33, �12, �23, �34 are positive constants and their
magnitudes are less than equal to unity.

It may be pointed out that for feasibility of model (2.1), the growth rates of bacteria and protozoa should be positive.
Hence, from the second and third equation of the model, it follows that

�1K1 − K11�1 > 0 (2.2)

and

�2K2 − K22�2 > 0. (2.3)

Following, Freedman and So [5], the region of attraction � for all solutions initiating in the positive octant is given
by

� =
{

0�T � Q

�0
, 0�B �RB, 0�P �RP , 0�N �RN, 0�C� q

�4

}
, (2.4)

where

RB = �1K1Q

�10(K11Q + K12�0)
, (2.5)

RP = �1�2K1K2Q

�20[K22�1K1Q + �10K21(K11Q + K12�0)] , (2.6)

RN = �1�2�3K1K2K3Q

�20�30[K22�1K1Q + �10K21(K11Q + K12�0)] . (2.7)

It is assumed here that all the initial values of the variables belong to set �. In the following, we analyze this model
(2.1) by using the qualitative theory of differential [4,7,12,16,17].

3. Equilibrium analysis

System (2.1) has following four nonnegative equilibria in �. They are listed below:

(i) E1(Q/�0, 0, 0, 0, q/�4) which always exists.
(ii) E2(T

∗
2 , B∗

2 , 0, 0, C∗
2 ) exists, provided the following conditions are satisfied:

(�1K1 − K11�1)Q − K12�0�1 > 0, (3.1)

q − �12
K1T

∗
2 B∗

2

K12 + K11T
∗
2

− �11�1B
∗
2 > 0. (3.2)
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(iii) E3(T
∗
3 , B∗

3 , P ∗
3 , 0, C∗

3 ) exists, provided the following conditions are valid:

�20[(�1K1 − K11�1)Q − K12�0�1] + K2�2

K21
(K11Q + K12�0) > 0, (3.3)

�10 + 1

�20

K2

(K21 + K22RB)2

[
�2K2K21

K21 + K22RB

− K22

(
�2K2RB

K21 + K22RB

− �2

)]
> 0, (3.4)

�2K2B
∗
3

K21 + K22B
∗
3

− �2 > 0, (3.5)

q − �12
K1T

∗
3 B∗

3

K12 + K11T
∗
3

− �23
K2T

∗
3 B∗

3

K21 + K22B
∗
3

− �11�1B
∗
3 − �22�2P

∗
3 > 0. (3.6)

(iv) E4(T
∗, B∗, P ∗, N∗, C∗) exists whenever the following conditions are satisfied:

(�1K1 − K11�1)Q − K12�0�1 + K2m

K21l
(K11Q + K12�0) > 0, (3.7)

�10 + K2

(K21 + K22RB)2l

[
�30�2K2K21

(K21 + K22RB)
− K22

(
�30�2K2RB

(K21 + K22RB)
− m

)]
> 0, (3.8)

�30�2K2B
∗

(K21 + K22B∗)
− m > 0, (3.9)

�3K3P
∗ − �3 > 0, (3.10)

q − �12
K1T

∗B∗

K12 + K11T ∗ − �23
K2B

∗P ∗

K21 + K22B∗ − �34K3P
∗N∗ − �11�1B

∗

− �22�2P
∗ − �33�3N

∗ > 0, (3.11)

where l = (�20�30 + �3K
2
3 ), m = �30�2 − K3�3.

Proof. The equilibria Ei (i = 1, 2, 3, 4) of system (2.1) are obtained by solving the following set of simultaneous
algebraic equations:

Q − �0T − K1TB

K12 + K11T
= 0, (3.12)

�1K1TB

K12 + K11T
− �1B − �10B

2 − K2BP

K21 + K22B
= 0, (3.13)

�2K2BP

K21 + K22B
− �2P − �20P

2 = 0, (3.14)

�3K3PN − �3N − �30N
2 = 0, (3.15)

q − �4C − �12
K1TB

K12 + K11T
− �23

K2BP

K21 + K22B
− �34K3PN − �11�1B − �22�2P − �33�3N = 0. (3.16)

The equilibrium E1(Q/�0, 0, 0, 0, q/�4) exists obviously. We show the existence of other equilibria as follows.
Existence of E2: for the equilibrium E2(T

∗
2 , B∗

2 , 0, 0, C∗
2 ), the values of T ∗

2 , B∗
2 and C∗

2 are obtained by solving the
following algebraic equations:

B = (Q − �0T )

K1

(
K11 + K12

T

)
, (3.17)

B = 1

�10

[
�1K1T

K12 + K11T
− �1

]
. (3.18)
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Fig. 1. Existence of (T ∗
2 , B∗

2 ).

From the isocline given by (3.17), it is easy to note the following:

(i) B = 0 at T = Q/�0
(ii) B → ∞ as T → 0,

(iii) dB
dT

= −K12
T 2

(Q−�0T )
K1

− �0
K1

(
K11 + K12

T

)
, which is negative for 0�T �Q/�0. Thus B decreases as T increases.

From the isocline given by (3.18), it is noted that B < 0 at T = 0 and B = 0 at T = K12�1/(�1K1 − K11�1), which is
positive. Further dB/dT > 0 and hence B increases for all T > 0.

Thus, the two isoclines (3.17) and (3.18) intersect at T ∗
2 , B∗

2 (see Fig. 1) provided (�1K1 −K11�1)Q−K12�0�1 > 0.
Using these values of T ∗

2 and B∗
2 , we get C∗

2 from (3.16) as follows:

C∗
2 = 1

�4

[
q − �12

K1T
∗
2 B∗

2

K12 + K11T
∗
2

− �11�1B
∗
2

]
, (3.19)

which is positive provided the right-hand side of (3.19) is positive. This gives condition (3.2).
Thus, E2(T

∗
2 , B∗

2 , 0, 0, C∗
2 ) exists, provided conditions (3.1) and (3.2) are satisfied.

Existence of E3: for the equilibrium E3(T
∗
3 , B∗

3 , P ∗
3 , 0, C∗

3 ), the values of T ∗
3 and B∗

3 are given by the following
algebraic equations:

B = (Q − �0T )

K1

(
K11 + K12

T

)
(3.20)

and

�1K1T

K12 + K11T
− �1 = �10B + K2

(K21 + K22B)

1

�20

(
�2K2B

K21 + K22B
− �2

)
. (3.21)

Isocline (3.20) is the same as (3.17), hence its behavior is also the same.
From the isocline given by (3.21), it is noted that B increases with T in 0�B �RB (RB is given by (2.5)), provided

inequality (3.4) is satisfied.
Also B = 0 at

T = K12

(
�1 − K2�2

�20K21

)/(
(�1K1 − K11�1) + K11

K2�2

�20K21

)
,
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Fig. 2. Existence of (T ∗
3 , B∗

3 ).

which is positive or negative depending on the sign of �̄1 = (�1 −K2�2/�20K21). It is noted that the value of B at T =0
is given by the following cubic equation:

�10�20K
2
22B

3 + (2�10�20K21K22 + �20K
2
22�1)B

2

+ (�10�20K
2
21 + K2(�2K2 − K22�2) + �20�1K21K22)B + �20K

2
21�̄1 = 0. (3.22)

It is clear that one root of Eq. (3.22) is positive or negative depending on whether �̄1 is negative or positive, respectively.
Thus, from the above analysis we conclude that the two isoclines (3.20) and (3.21) intersect at a unique point (T ∗

3 , B∗
3 )

in the interior of first quadrant (see Fig. 2, which is drawn for �̄1 > 0) provided conditions (3.3) and (3.4) are satisfied.
Using these values of T ∗

3 , B∗
3 in Eqs. (3.14) and (3.16), we get

P ∗
3 = 1

�20

(
�2K2B

∗
3

K21 + K22B
∗
3

− �2

)
, (3.23)

C∗
3 = 1

�4

[
q − �12

K1T
∗
3 B∗

3

K12 + K11T
∗
3

− �23
K2B

∗
3 P ∗

3

K21 + K22B
∗
3

− �11�1B
∗
3 − �22�2P

∗
3

]
(3.24)

which are positive under conditions (3.5) and (3.6), respectively.
Thus E3 exists provided conditions (3.3)–(3.6) are satisfied.
Keeping in mind model (2.1), it is noted on physical consideration that the growth rate of bacteria in the absence of

protozoa is more than when protozoa is present (as protozoa predate bacteria). Thus B∗
2 > B∗

3 . (This result can also be
proved from model (2.1) by using a comparison theorem [7].)

Existence of E4: for the equilibrium E4(T
∗, B∗, P ∗, N∗, C∗), T ∗ and B∗ are obtained by solving the following

algebraic equations:

B = (Q − �0T )

K1

(
K11 + K12

T

)
(3.25)

and

�1K1T

K12 + K11T
− �1 − �10B − K2

(K21 + K22B)

1

l

[
�30�2K2B

K21 + K22B
− m

]
= 0, (3.26)

where l = (�20�30 + �3K
2
3 ) and m = (�30�2 − K3�3).
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Fig. 3. Existence of (T ∗, B∗).

Isocline (3.25) is the same as (3.17); hence, its behavior is also the same.
From isocline (3.26), it is noted that under condition (3.8) B increases with T in 0�B �RB .
It is also noted that B = 0 at

T = K12

(
�1 − K2m

K21l

)/{
(�1K1 − K11�1) + K11K2m

K21l

}

which is positive or negative depending upon the sign of �̃1 = (�1 − (K2/K21)(m/l)).
Further, for this isocline, the value of B at T = 0 is given by the following cubic equation:

�10K
2
22B

3 + (2�10K21K22 + K2
22�1)B

2 +
(

�10K
2
21 + K2

l
(�30�2K2 − mK22) + 2K21K22�1

)
B

+ K2
21�̃1 = 0. (3.27)

One root of Eq. (3.27) is positive or negative depending on the negative or positive value of �̃1, respectively.
Thus, from the above discussion, we conclude that the two isoclines (3.25) and (3.26) intersect at a unique point

(T ∗, B∗) in the interior of first quadrant (see Fig. 3, drawn for �̃1 > 0) provided (3.7) and (3.8) are satisfied.
Using these values of T ∗and B∗we get,

P ∗ = 1

l

[
�30�2K2B

∗

K21 + K22B∗ − m

]
, (3.28)

N∗ = 1

�30
(�3K3P

∗ − �3), (3.29)

C∗ = 1

�4

[
q − �12

K1T
∗B∗

K12 + K11T ∗ − �23
K2B

∗P ∗

K21 + K22B∗ − �34K3P
∗N∗ − �11�1B

∗

− �22�2P
∗ − �33�3N

∗
]

(3.30)

which are positive under conditions (3.9)–(3.11).
Thus E4 exists, provided conditions (3.7)–(3.11) are satisfied. �

On physical consideration from model (2.1) it is noted here that growth rate of protozoa in the absence of lower
order aquatic population is greater than that in its presence (as protozoa is predated by this aquatic population). Hence
P ∗

3 > P ∗. (This result can also be proved from model (2.1) by using a comparison theorem [7].)
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Remark 1.1. Using Eqs. (3.25) and (3.26) we can check that under condition (3.8), dT ∗/dQ > 0 and dB∗/dT ∗ > 0.
This gives dB∗/dQ = (dB∗/dT ∗)(dT ∗/dQ) > 0.

Also, from Eq. (3.28), we note that

dP ∗

dQ
= 1

l

�30�2K2K21

(K21 + K22B∗)2

dB∗

dQ
> 0.

Similarly from Eq. (3.29), we get dN∗/dQ = (�3K3/�30)(dP ∗/dQ) > 0.
Hence T ∗, B∗, P ∗ and N∗ increase as Q increases.
Also from Eq. (3.30) it can be seen that dC∗/dQ < 0, dC∗/d�ij < 0 and dC∗/dq > 0.
The first inequality implies that as the rate of discharge of organic pollutants ‘Q’ increases, the equilibrium level of

dissolved oxygen C∗ decreases. The second inequality suggests that C∗ further decreases due to presence of various
degradation processes. Also, it can be noted from the third inequality that C∗ increases as the rate of input of dissolved
oxygen ‘q’ increases.

4. Stability analysis

In our analysis, we assume that all the above equilibria exist. The local stability behavior of these equilibria has been
studied and the result is stated in the following theorem:

Theorem 1. The equilibrium Ei (i =1, 2 or 3) is unstable whenever Ei+1 exists. The equilibrium E4 is locally asymp-
totically stable provided the following condition is satisfied:

�10 − K2K22

K2
21

P ∗ > 0. (4.1)

The proof is given in Appendix A.

Theorem 2. The equilibrium E4 is nonlinearly stable in � provided the following two conditions are satisfied:

�10 − K2K22

K2
21

P ∗ > 0, (4.2)

�0T
∗

�1

[
�10 − K2K22

K2
21

P ∗
]

−
[

K1K12T
∗

(K12 + K11T ∗)
Q

(K12�0 + K11Q)

]2

> 0. (4.3)

The proof is given in Appendix B.
We note from the above that if �10 =0, the above conditions are never satisfied. This shows that crowding coefficient

of bacteria population density (i.e. flaking off term) stabilizes the system.
The above theorems imply that the concentration of dissolved oxygen decreases as the discharge rate of organic

pollutants increases. They also show that if the cumulative rate of discharge of pollutants is very high, the concentration
of dissolved oxygen may become negligible caused by various degradation processes.

5. A model for control of organic pollutants

Here, we propose and analyze a nonlinear mathematical model to study the effect of control of discharge rate of
organic pollutants on dissolved oxygen by using some effort [15]. Let e be the effort applied to control the discharge of
organic pollutants. It is assumed that the growth rate of effort applied to control the organic pollutants is proportional to
the cumulative concentration of organic pollutants (i.e. r1T ), and that the rate of natural depletion of effort is proportional
to e (i.e. r10e). It is assumed further that the rate of decrease of organic pollutants in the water body is proportional
to effort e (i.e. �e). In the following model the other notations and assumptions for growth rates and depletion rates
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of organic pollutants, bacteria, protozoa, lower order aquatic population and dissolved oxygen are the same as in
model (2.1).

Keeping the above considerations in mind, the control dynamics of the system is governed by the following system
of differential equations:

dT

dt
= Q − �0T − K1TB

K12 + K11T
− � e,

dB

dt
= �1

K1TB

K12 + K11T
− �1B − �10B

2 − K2BP

K21 + K22B
,

dP

dt
= �2

K2BP

K21 + K22B
− �2P − �20P

2 − K3PN,

dN

dt
= �3K3PN − �3N − �30N

2,

dC

dt
= q − �4C − �34K3PN − �11�1B − �22�2P − �33�3N − �12

K1T B

K12 + K11T
− �23

K2BP

K21 + K22B
,

de

dt
= r1T − r10e, (5.1)

where T (0) > 0, B(0) > 0, P (0) > 0, N(0) > 0, C(0) > 0, e(0) > 0.
In (5.1) � is the control rate of cumulative density of organic pollutants, r1 is the growth rate of effort and r10 is its

depletion rate.
As before we can find that the set �c, defined below, is a region of attraction for model (5.1).

�c =
{

0�T � Q

�0
, 0�B �RB, 0�P �RP , 0�N �RN, 0�C� q

�4
, 0�e� r1Q

r10�0

}
, (5.2)

where all the initial values of the variables belong to set �c.

5.1. Equilibrium analysis

Model (5.1) has four equilibria in �c as described below (the proof of existence of each of these equilibria is similar
as discussed for model (2.1)).

(i) Ẽ1

(
r10Q

r10�0+�r1
, 0, 0, 0,

q
�4

,
r1Q

r10�0+�r1

)
.

(ii) Ẽ2(T̃2, B̃2, 0, 0, C̃2, ẽ2) exists provided the following are satisfied:

(�1K1 − K11�1)Q − K12�1(�0 + �r1/r10) > 0, (5.3)

and

q − �12
K1T̃2B̃2

K12 + K11T̃2
− �11�1B̃2 > 0, (5.4)

where T̃2, B̃2, C̃2 and ẽ2 are given by the following equations:

Q −
(

�0 + �r1

r10

)
T̃2 − K1T̃2B̃2

K12 + K11T̃2
= 0,

�1K1T̃2B̃2

K12 + K11T̃2
− �1 − �10B̃2 = 0,
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C̃2 = 1

�4

[
q − �12

K1T̃2B̃2

K12 + K11T̃2
− �11�1B̃2

]
,

ẽ = r1

r10
T̃2.

(iii) Ẽ3(T̃3, B̃3, P̃3, 0, C̃3, ẽ3) exists provided the following conditions are satisfied:

�20

[
(�1K1 − K11�1)Q − K12�1

(
�0 + �r1

r10

)]
+ K2�2

K21

[
K11Q + K12

(
�0 + �r1

r10

)]
> 0, (5.5)

�10 + K2

�20(K21 + K22RB)2

[
�2K2K21

K21 + K22RB

− K22

(
�2K2RB

K21 + K22RB

− �2

)]
> 0, (5.6)

�2K2B̃3

K21 + K22B̃3
− �2 > 0, (5.7)

q − �12
K1T̃3B̃3

K12 + K11T̃3
− �23

K2B̃3P̃3

K21 + K22B̃3
− �11�1B̃3 − �22�2P̃3 > 0, (5.8)

where T̃3, B̃3, P̃3, C̃3 and ẽ3 are given by the following equations:

Q −
(

�0 + �r1

r10

)
T̃3 − K1T̃3 B̃3

K12 + K11T̃3
= 0,

�1K1T̃3

K12 + K11T̃3
− �1 = �10B̃ + K2

�20(K21 + K22B̃3)

[
�2K2B̃3

K21 + K22B̃3
− �2

]
,

P̃3 = 1

�20

[
�2K2B̃3

K21 + K22B̃3
− �2

]
,

C̃3 = 1

�4

[
q − �12

K1T̃3B̃3

K12 + K11T̃3
− �23

K2B̃3P̃3

K21 + K22B̃3
− �11�1B̃3 − �22�2P̃3

]
,

ẽ3 = r1

r10
T̃3.

(iv) Ẽ4 (T̃ , B̃, P̃ , Ñ, C̃, ẽ) exists, provided the following conditions are satisfied:

(�1K1 − K11�1)Q − K12�1

(
�0 + �r1

r10

)
+ K2m

K21l

(
K11Q + K12

(
�0 + �r1

r10

))
> 0, (5.9)

�10 + K2

(K21 + K22RB)2l

[
�30�2K2K21

(K21 + K22RB)
− K22

(
�30�2K2RB

(K21 + K22RB)
− m

)]
> 0, (5.10)

�30�2K2B̃

(K21 + K22B̃)
− m > 0, (5.11)
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�3K3P̃ − �3 > 0, (5.12)

q − �12K1T̃ B̃

K12 + K11T̃
− �23K2B̃ P̃

K21 + K22B̃
− �34K3P̃ Ñ − �11�1B̃ − �22�2P̃ − �33�3Ñ > 0, (5.13)

where l = (�20�30 + �3K
2
3 ), m = �30�2 − K3�3 and T̃ , B̃, P̃ , Ñ, C̃, ẽ are given by the following equations:

Q −
(

�0 + �r1

r10

)
T̃ − K1T̃ B̃

K12 + K11T̃
= 0, (5.14)

�1K1T̃

K12 + K11T̃
− �1 = �10B̃ + K2

l(K21 + K22B̃)

[
�30�2K2B̃

(K21 + K22B̃)
− m

]
, (5.15)

P̃ = 1

l

[
�30�2K2B̃

K21 + K22B̃
− m

]
, (5.16)

Ñ = 1

�30
(�3K3P̃ − �3), (5.17)

C̃ = 1

�4

[
q − �12K1T̃ B̃

K12 + K11T̃
− �23K2B̃ P̃

K21 + K22B̃
− �34K3P̃ Ñ − �11�1B̃ − �22�2P̃ − �33�3Ñ

]
, (5.18)

ẽ = r1

r10
T̃ . (5.19)

In this case also it can be checked that as the rate of control of organic pollutants � increases, the equilibrium level of
the dissolved oxygen concentration C̃ increases.

As in the previous case, for model (5.1) also we can easily show that Ẽi (i = 1, 2 or 3) is unstable whenever Ẽi+1
exists. The local stability behavior of the equilibrium Ẽ4(T̃ , B̃, P̃ , Ñ, C̃, ẽ) is stated in the following theorem.

Theorem 3. The equilibrium Ẽ4 is locally asymptotically stable if

�10 − K2K22

K2
21

P̃ > 0. (5.20)

The proof is given in Appendix C.

Theorem 4. The equilibrium Ẽ4 is nonlinearly stable in �c if the following conditions are satisfied:

�10 − K2K22

K2
21

P̃ > 0, (5.21)

�0T̃

�1

[
�10 − K2K22

K2
21

P̃

]
−
[

K1K12T̃

(K12 + K11T̃ )

Q

(K12�0 + K11Q)

]2

> 0. (5.22)

In this case also, we may note the stabilizing effect of �10. Further, these theorems imply that if an appropriate effort
is applied to control organic pollutants, the equilibrium level of dissolved oxygen can be maintained at a desired level.
(The proof is given in Appendix D.)
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Fig. 4. Global stability in T –B plane.

6. Numerical example

To check the feasibility of our analysis regarding the existence of E4 and corresponding stability conditions, we
conduct some numerical computation by choosing the following values of the parameters in model (2.1):

Q = 3.0, �0 = 1.0, K1 = 1.0, K12 = 0.1, K11 = 1.0,

�1 = 1.0, �1 = 0.5, �10 = 0.1, K2 = 1.0, K21 = 2.0, K22 = 1.0,

�2 = 1.0, �2 = 0.02, �20 = 0.25, K3 = 1.0,

�3 = 1.0, �3 = 0.2, �30 = 0.25, q = 10.0, �4 = 2.0, �12 = �23 = �34 = �11 = �22 = �33 = 0.25.

It is found that under the above set of parameters, conditions for the existence of interior equilibrium
E4(T

∗, B∗, P ∗, N∗, C∗) are satisfied and E4 is given by

T ∗ = 0.572971, B∗ = 2.850616, P ∗ = 0.321807, N∗ = 0.487229, C∗ = 3.924467.

The eigenvalues of the Jacobian matrix M corresponding to this equilibrium E4 are

− 2, −0.926092 + 0.217815 i, −0.926092 − 0.217815 i,

− 0.112787 + 0.404036 i, −0.112787 − 0.404036 i,

which are either negative or have negative real parts. Hence E4 is locally stable.
It is pointed out here that for the above set of parameters, the conditions for local stability (4.1) and nonlinear stability

(4.2) and (4.3) are also satisfied.
Further, for the above set of parameters model (2.1) computer generated graphs of T verses B and T verses C are

shown in Figs. 4 and 5, which indicates the global stability of (T ∗, B∗) in the TB-plane and (T ∗, C∗) in TC-plane.

7. Conclusion

In this paper, we have proposed and analyzed a nonlinear mathematical model for the depletion of dissolved oxygen
due to discharge of organic pollutants in a water body by considering biodegradation and biochemical processes in
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Fig. 5. Global stability in T –C plane.

the food chain involving bacteria, protozoa and an aquatic population (for example a fish population) in a water body.
It has been shown that if the cumulative rate of discharge of pollutants increases, the equilibrium level of dissolved
oxygen decreases, the amount of which depends on the rate of growth of oxygen as well as on various biodegradation
and biochemical processes in the water body. It has also been shown that under certain conditions, if the cumulative
rate of introduction of water pollutants is too high, the equilibrium concentration of the dissolved oxygen may become
negligibly small, threatening the survival of biological species in a water body.

A model to control the cumulative discharge of organic pollutants in a water body is also proposed and analyzed.
It has been shown that the equilibrium concentration of the dissolved oxygen can be maintained at a desired level by
using an appropriate effort to control the cumulative discharge of organic pollutants.

Appendix A. Local stability analysis

The general variational matrix M for system (2.1) is given as follows:

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−f1(T , B) − K1T

(K12 + K11T )
0 0 0

�1K1K12B

(K12 + K11T )2 f2(T , B, P ) − K2B

(K21 + K22B)
0 0

0
�2K2K21P

(K21 + K22B)2 f3(B, P, N) −K3P 0

0 0 �3K3N f4(P, N) 0
−g1(T , B) −g2(T , B, P ) −g3(B, N) −g4(P ) −�4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where

f1(T , B) =
[
�0 + K1K12B

(K12 + K11T )2

]
,

f2(T , B, P ) =
[

�1K1T

(K12 + K11T )
− �1 − 2�10B − K2K21P

(K21 + K22B)2

]
,

f3(B, P, N) = �2K2B

(K21 + K22B)
− �2 − 2�20P − K3N, f4(P, N) = �3K3P − �3 − 2�30N ,
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g1(T , B) = �12K1K12B

(K12 + K11T )2 , g2(T , B, P ) = �12K1T

K12 + K11T
+ �23K2K21P

(K21 + K22B)2 + �11�1,

g3(B, N) = �23K2B

K21 + K22B
+ �22�2 + �34K3N, g4(P ) = �34K3P + �33�3. (A.1)

We use eigenvalue method to study the local stability behavior of equilibria Ei (i = 1, 2, 3).
Let Mi be the matrix obtained from M after substituting for Ei .
For the equilibrium E1, we note that one of the eigenvalues of M1 is ((�1K1−K11�1)Q−K12�0�1)/(K12�0+K11Q),

which is positive whenever E2 exists (condition (3.1)). Hence, E1 is unstable whenever E2 exists.
For the equilibrium E2(T

∗
2 , B∗

2 , 0, 0, C∗
2 ), we note that one of the eigenvalues of M2 is (�2K2B

∗
2 /(K21+K22B

∗
2 )−�2),

which is positive whenever E3 exists (as B∗
3 < B∗

2 ). Thus, E2 is unstable whenever E3 exists.
For the equilibrium E3(T

∗
3 , B∗

3 , P ∗
3 , 0, C∗

3 ), we note that one of the eigenvalues of M3 is (�3K3P
∗
3 − �3), which is

positive whenever E4 exists (as P ∗ < P ∗
3 ). This shows that E3 is unstable whenever E4 exists.

Since in our study E4 is the most interesting equilibrium from ecological point of view and its behavior cannot be
described in a simple manner from M4, we discuss its behavior by using Lyapunov’s method.

Proof of Theorem 1. We linearize system (2.1) by using the transformations

T = T ∗ + �, B = B∗ + b, P = P ∗ + p, N = N∗ + n, C = C∗ + c. (A.2)

Now we consider the following positive definite function:

V = 1

2

(
�2 + m1

B∗ b2 + m2

P ∗ p2 + m3

N∗ n2 + m4c
2
)

, (A.3)

and use the linearized system of (2.1) to get

dV

dt
= −f1(T

∗, B∗)�2 − m1f5(B
∗, P ∗)b2,

−m2�20p
2 − m3�30n

2 − m4�4c
2,

−m4g1(T
∗, B∗)�c − m4g2(T

∗, B∗, P ∗)bc − m4g3(B
∗, N∗)pc − m4g4(P

∗)nc, (A.4)

where the functions f1 and gi (i = 1, 2, 3, 4) are given by (A.1), and

f5(B, P ) = �10 − (K2K22P/(K21 + K22B)2).

Now choosing m1 = T ∗(K12 + K11T
∗)/(�1K12), m2 = m1(K21 + K22B

∗)/(�2K21), m3 = m2/�3 we note that the
coefficient of b2 is negative under condition (4.1). Thus dV/dt can be made negative definite by appropriately choosing
a positive value for m4 following usual methods of nonlinear analysis [4,7,16,17].

Appendix B. Proof of Theorem 2

To prove this theorem we consider the following positive definite function:

V = (T − T ∗)2/2 + m1(B − B∗ − B∗ ln(B/B∗)) + m2(P − P ∗ − P ∗ ln(P/P ∗))
+ m3(N − N∗ − N∗ ln(N/N∗)) + m4(C − C∗)2/2. (B.1)
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Now using system (2.1) we get,

dV

dt
= − K1K12B(T − T ∗)2

(K12 + K11T )(K12 + K11T ∗)
− m1K2K22P

∗
(

1

K2
21

− 1

(K21 + K22B)(K21 + K22B∗)

)
(B − B∗)2

− �0(T − T ∗)2 − m1

[
�10 − K2K22

(K21 + K22B∗)2 P ∗
]

(B − B∗)2 − m2�20(P − P ∗)2

− m3�30(N − N∗)2 − m4�4(C − C∗)2

+ (T − T ∗)(B − B∗)
[

K1K12T
∗T

(K12 + K11T )(K12 + K11T ∗)

]

− m4(T − T ∗)(C − C∗)
[

�12K1K12B

(K12 + K11T )(K12 + K11T ∗)

]

− m4(B − B∗)(C − C∗)
[

�12K1T
∗

K12 + K11T ∗ + �23K2K21P

(K21 + K22B)(K21 + K22B∗)
+ �11�1

]

− m4(P − P ∗)(C − C∗)
[

�23K2B
∗

K21 + K22B∗ + �34K3N
∗ + �22�2

]
− m4(N − N∗)(C − C∗)[�34K3P + �33�3]. (B.2)

Note that

1

K2
21

− 1

(K21 + K22B)(K21 + K22B∗)
> 0

inside the region of attraction �.
Now choosing m1 = T ∗/�1, m2 = m1(K21 + K22B

∗)/(�2K21), m3 = m2/�3, we note that dV/dt can be made
negative definite inside � if

�10 − K2K22

K2
21

P ∗ > 0, (B.3)

�0T
∗

�1

[
�10 − K2K22

K2
21

P ∗
]

−
[

K1K12T
∗

(K12 + K11T ∗)
Q

(K12�0 + K11Q)

]2

> 0 (B.4)

by making an appropriate choice for m4 as pointed out earlier.

Appendix C. Proof of Theorem 3

We linearize system (5.1) by using the following transformations:

T = T̃ + �, B = B̃ + b, P = P̃ + p, N = Ñ + n, C = C̃ + c, e = ẽ + e1.

Now using the following positive definite function:

V = 1

2

(
�2 + m1

B̃
b2 + m2

P̃
p2 + m3

Ñ
n2 + m4c

2 + m5e
2
1

)
, (C.1)

and use the linearized system of (5.1) to get

dV

dt
= − f1(T̃ , B̃)�2 − m1f5(B̃, P̃ )b2 − m2�20p

2 − m3�30n
2 − m4�4c

2 − �r10

r1
e2

1

− m4g1(T̃ , B̃)�c − m4g2(T̃ , B̃, P̃ )bc − m4g3(B̃, Ñ)pc − m4g4(P̃ )nc (C.2)

and m1’s chosen as positive constants in the following manner: m1 = T̃ (K12 + K11T̃ )/(�1K1), m2 = m1(K21 +
K22B̃)/(�2K21), m3 = m2/�3, m5 = �/r1.
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If the following condition is satisfied:

�10 − K2K22

K2
21

P̃ > 0.

then dV/dt can be made negative definite by appropriate choice of m4 > 0. Hence Ẽ4 is locally stable under above
condition.

Appendix D. Proof of Theorem 4

We prove this theorem by using the following positive definite function:

V = 1

2
(T − T̃ )2 + m1

(
B − B̃ − B̃ ln

B

B̃

)
+ m2

(
P − P̃ − P̃ ln

P

P̃

)

+ m3

(
N − Ñ − Ñ ln

N

Ñ

)
+ 1

2
m4(C − C̃)2 + 1

2
m5(e − ẽ)2, (D.1)

where m1, m2, m3, m4, m5 are some positive constants to be chosen appropriately.
Using system (5.1) with the constants m1, m2, m3 and m5 chosen as follows: m1 = T̃ (K12 + K11T̃ )/(�1K1), m2 =

m1(K21 + K22B̃)/(�2K21), m3 = m2/�3, m5 = �/r1, we get

dV

dt
= − K1K12B(T − T̃ )2

(K12 + K11T )(K12 + K11T̃ )

− m1K2K22P̃

(
1

K2
21

− 1

(K21 + K22B)(K21 + K22B̃)

)
(B − B̃)2 − m5r10(e − ẽ)2

− �0(T − T̃ )2 − m1

[
�10 − K2K22

K2
21

P̃

]
(B − B̃)2

− m2�20(P − P̃ )2 − m3�30(N − Ñ)2 − m4�4(C − C̃)2

+ (T − T̃ )(B − B̃)

[
− K1K12T̃ T

(K12 + K11T )(K12 + K11T̃ )

]

− m4(T − T̃ )(C − C̃)

[
�12K1K12B

(K12 + K11T )(K12 + K11T̃ )

]

− m4(B − B̃)(C − C̃)

[
�12K1T̃

K12 + K11T̃
+ �23K2K21P

(K21 + K22B)(K21 + K22B̃)
+ �11�1

]

− m4(P − P̃ )(C − C̃)

[
�23K2B̃

K21 + K22B̃
+ �34K3Ñ + �22�2

]

− m4(N − Ñ)(C − C̃)[�34K3P + �33�3]. (D.2)

Now dV/dt can be made negative definite in �c provided the following conditions (as given in the theorem) are
satisfied:

�10 − K2K21

K2
21

P̃ > 0

and

�0T̃

�1

[
�10 − K2K22

K2
21

P̃

]
−
[

K1K12T̃

K12 + K11T̃

Q

K12�0 + K11Q

]2

> 0

for a suitable choice of m4 > 0.
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