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Summary 

An extended theory of hydrodynamic lubrication is derived from the 
Reynolds equation; the theory takes into account the effects of uniform 
rotation about an axis that lies across the fluid film. The pressure and load 
capacity of bearing systems are obtained when the film thickness is a linear 
or an exponential function of the coordinate along the bearing length. While 
the load capacity increases with increasing coefficient of fluid viscosity for a 
plane inclined slider or an exponentially inclined slider using the classical 
theory, it is independent of the fluid viscosity using the extended theory 
when rotation is small. 

1. Introduction 

“Hydrodynamic lubrication” is a process by which two surfaces moving 
at some relative velocity with respect to each other are separated by a fluid 
film in which forces are generated by the relative motion only. A two- 
dimensional theory of lubrication was first developed by Reynolds [l] , who 
showed that the variation in the lubricant pressure in the bearing is described 
by a partial differential equation (the Reynolds equation) and that if the 
lubricant layer is to transmit pressure between a shaft and a journal the layer 
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must have varying thickness; otherwise, the stresses in the lubricant cannot 
balance the load of the shaft [2]. 

To extend the applicability of the theory and to enlarge its scope, 
several generalizations and extensions of the Reynolds equation have been 
attempted and the resulting theories worked out. Banerjee et al. [3] derived 
an extended Reynolds equation which takes into account the effects of uni- 
form rotation about an axis across the fluid film and derived quantitative 
details for the “short bearing” case when the extent of rotation is small. 
Rotation introduces a number of new elements into a hydrodynamic 
problem. Some of the consequences are unexpected. For example, the role 
of viscosity is inverted. The effect of rotation can be traced to certain 
general theorems, relating to vorticity, in the dynamics of rotating fluids. 
Rotation induces a component of vorticity in the direction of rotation, and 
the effects arising from this are predominant: for large Taylor numbers the 
stream lines become closely wound spirals with motions principally confined 
to planes transverse to the direction of rotation. Therefore, derivation of an 
extended Reynolds equation, in which the effects of uniform rotation about 
an axis which lies across the fluid film are considered, would be useful be- 
cause derived results are experimentally verifiable and most real physical 
systems are affected by rotation. The investigations of Banerjee et al. [3] are 
limited because of the simplifying assumption that the extent of rotation is 
small. More importantly, a certain class of fundamental solutions of this 
extended problem was omitted in their work [ 31. 

An extended theory of hydrodynamic lubrication is formulated in the 
present paper: this theory takes into account the effects of uniform rotation 
about an axis that lies across the fluid film. An extended version of the 
Reynolds equation is derived for arbitrary amounts of uniform rotation 
which depends on the rotation number M (the square root of the conven- 
tional Taylor number) in addition to density, viscosity, film thickness and 
surface and transverse velocities. Certain fundamental solutions are presented 
which are not possible with the classical theory. The pressure and load 
capacity of the bearing systems are obtained where the film thickness is a 
linear or an exponential function of the coordinate along the bearing length. 
An important qualitative result is that whereas the load capacity increases 
with increasing coefficient of fluid viscosity for a plane inclined slider or an 
exponentially inclined slider by the classical theory, it is independent of the 
fluid viscosity in the present context when the extent of rotation is small. 

2. The governing equations of hydrodynamic lubrication in a rotating frame 
of reference 

Consider a layer of fluid kept rotating at a constant rate. Let n denote 
the angular velocity of rotation about the z axis. The hydrodynamic equa- 
tions of momentum and continuity in the usual tensor component notation 
are 
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+ 2pEijk UjLlk (1) 
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at axj 

(2) 

If we apply standard assumptions of lubrication theory [ 41, eqns. (1) 
reduce to 

a224 0=-;+ps + 2pciv 

o=-ap+/l$-2pik4 
ay 

(3) 

(4) 

and 

(5) 

while eqn. (2) for steady flow gives 

a(pu) a(Pu) a(pw) +-+-=o 
ax ay a2 

(6) 

where 

P=P-(+fJEijki2irk)2 (7) 

denotes the modified pressure. 
Equations (3) - (7) give the governing hydrodynamical equations of 

momentum and continuity for the problem of steady lubrication. 

3. Derivation of the extended Reynolds equation 

From eqns. (3) - (5) the governing equations for u and u are obtained as 
follows : 

2~~2 ap u=-_ - 
~12 ay 

(8) 

and 

a4u 2pa 2 
-+ - 
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a2f4 c1 
UC-- 

p2 ax 
(9) 
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The boundary conditions on u and u are given by 

u = u, at z=O 

u= Uh at z=h 

a2u aP 
P -=_ 

az2 ax 
at z=Oandz=h 

and 

ll=O at z=Oandz=h 

a2u ap _ =- 
’ az2 ay 

+ 2pQ u, at z=O 

a2v aP 
-=- 

’ az2 ay 
+ 2pf;2 Uh at z=h 

Using the non-dimensional quantities defined by 

$4 
he 

,2 
4c 

W p=--- 
rucqc 

_ z 
z=- 

he 
,=” M= 

2i-z k2pc 
Qc PC 

(10) 

(11) 

(12) 

and dropping the bars for convenience, eqns. (8) - (11) and (6) respectively 
reduce to 

* +MZp2 kfp ap 
_~=--- 

az4 g2 P2 kY 
(13) 

uo u=--=u, at z=O 
Qc 

uh u=--=u, 
Qc 

a2u 3~ 
pgx=g 

at z=h 

at z = 0 and z = h 

(14) 

(15) 
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U=O at z = 0 and z = h 

a2u ap 
CC~=-+MPUI ay 

a2v ap 
/-Q =-++~u2 

ay 

at z=O 

at z=h 

(16) 

and 

a(Pu) + d(PU) + d(PW) = o 

ax ay a2 
(17) 

Solutions for u and u which satisfy the relevant equations and boundary 
conditions are given by 

u = exp(hz){cI cos(Xz) + c2 sin(Xz)} + 

+ exp(-Az){cs cos(Xz) + c4 sin&z)} - ip g (18) 

and 

u = exp(hz){dl cos(Xz) + d2 sir@)} + 

+ exp(--hz){ds cos(Xz) + d4 sin(Az)} + kp E (19) 

where 

Cl II = z al sinh(Xh) cos(Ah) -a2 sin(Xh) cosh(Xh)} 

c2 = $ {aI cosh(hh) sin(hh) + a2 cos(hh) sinh(hh)} 

(21) 

(22) 

1 ap 
c3 =&+- --c, 

MP ay 

1 ap 
c --- -+c2 
4- Mp ax 

(23) 

(24) 

1 
=l=gp Mp U2 + g + exp(-Ah) g sin(hh) - MpU + ( I g)cos(Ah)/] 

(25) 

1 ap 
a -- 

2 - 2Mp I 
--exP(-hh)i(Mp(i, +g)sin(hh)+g cos(hh))] (26) ax 
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D = cos2(Xh) sinh2(hh) + cosh2(hh) sin2(Xh) 

(I, = -$ {al sin(M) cosh(hh) + a2 sinh(hh’) cos(hh)} 

d2 = $ {aI cos(hh) sinh(hh) - a2 cosh(Xh) sin(M)} 

and 

(27) 

(28) 

(29) 

(39) 

(31) 

Expanding u and u in terms of non-negative integral powers of M, we 
obtain the following: 

1 1 ap h-z 
u= ---_(z-h)+ - 

2~ ax h 
u,+J2 - 

t 

P ap 
-- -z(z3-2z2h+h3) 

24p2 ay 

and 

(32a) 

1 ap 
v= 2u-z(z-h)+ -z(~~-~~h+h~)+ 

+ p z{(U, - U2)z2 + 3Ulzh - (2U, + U2)h2} M + . . . 6vh 1 (32b) 
The expansions for u and u reproduce the classical Reynolds values and 

the values obtained by Banerjee et al. [ 31 for u and v for no rotation and 
small rotation respectively. 

The substitution of expressions for u and u from eqns. (18) and (19) in 
the equation of continuity (eqn. (17)) gives 

a(pw) a 
- =-- 

a2 ax -ii ay 
’ ~+exp~hz)/(MpUl +g)cos(hz)-ssin(hs)/+ 

+ 2p(cl cos(hz) sinh(hz) + c2 sin(hz) cosh(hz)} 1 - 

A[L E-exp~hz)~(MpUl +~)sin(hs)+~cos(Az)/ + 
-ay iv ax 

+ 2p{d, cos(Xz) sinh(Xz) + d2 sin(Xz) cosh(Xz)} 1 (33) 

Integrating both sides of eqn. (33) with respect to z with the conditions 
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w 2!L,, 
Qc 

at z=O 

(34) 
wh 

w=-==2 at z=h 
Qe 

gives 

P(W2 -Wl) 

=- 1 ~+exp~~z)~(MpUl+~)cos(hz)-~sti(hx)~+ 

1 
+ 2p{c, cos(Xz) sinh(hz) + c2 sin(k) cosh(Xz)} 1 dz - 

J 

1 ap exp(--X2) - 
M 

\(MpUl +g)sin(kz)+gcos(Az)i+ 

1 

+ 2p{d, cos(hz) sinh(Xz) + d2 sin(hz) cosh(hz)} 
I 

da (35) 

The upper limit h in the last equation is a function of the coordinates x 
and y. Integrating before differentiation, which is permissible in the present 
case, gives 

;(U, + U,){h +MPtidh)l -$ M;UJ~ + U,N,(h) 
1 1 

-P(WZ--~1) + U2 &Wd (36) 

where 

1 sinh(Xh) - sin(hh) 
$1 (h) = - - 

XMp cosh(hh) + cos(Ah) 
(37) 

and 

$,(h) = - -!- + - 
1 sinh(hh) + sin(hh) 

Mp hMp cosh(hh) + cos(hh) 
(33) 

Equation (36) is the extended generalized Reynolds equation which 
reproduces the classical Reynolds equation and the extended Reynolds equa- 
tion obtained by Banerjee et al. [3] for no rotation and small rotation 
respectively. 

In most practical cases, the bearing is stationary and only the runner in 
the thrust bearings and the shaft in the journal bearings are moving. This 
implies 

u, = u 

us = 0 
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and then eqn. (36) becomes 

which is the same for both thrust and journal bearings with U as the sliding 
velocity of either runner or journal. For pure sliding, 

w2 = Wl 

and eqn. (40) reduces to 

(42) 

It is reasonable to assume that the lubricant is incompressible, the 
density is constant and the viscosity and sliding velocity do not change: then 
p, p and U should be treated as constants in eqn. (42). 

4. New fundamental solutions of the extended Reynolds equation 

Fundamental solutions of the extended Reynolds equation (eqn. (36)) 
in one dimension are possible. Such solutions are not possible with the clas- 
sical Reynolds theory. Two situations, i.e. when the film thickness is a linear 
or an exponential function of the coordinate along the bearing length, are 
considered. 

4.1. Plane inclined slider 
The plane inclined pad is the most common form of lubricated slider 

bearing. As an example of the application of the extended Reynolds equa- 
tion the pressure and load capacity for such a configuration are determined. 
Let 

u= +u 

h = h(y) (43) 

p = P(Y) 

Equation (42) then gives 

-$$l(h);j =-&iyilAhlj (44) 

Integrating eqn. (44) with respect to y and using the condition 



dP 
-= 0 
dy 

gives 

dP MpU -=- 
dy 2 

at h=h* 

Ill,(h*) -1 

G,(h) 

The film thickness can be expressed at any point as 

h=h, l+T 
i 1 
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(45) 

(46) 

(47) 

where 

h. n=‘-1 
ho 

Using eqn. (47), eqn. (46) can be written as 

dP _&.&!!!g!p&~ 
Integrating eqn. (49) with respect to h gives 

(48) 

(49) 

(50) 

where A is a constant of integration. h* is the value of h where dP/dy = 0, 
where the pressure is at a maximum. There are two unknowns (J/l (h*) and 
A) in eqn. (50); these must be found by the introduction of two boundary 
conditions : 

P=O at y=O orP=O at h=h, 

P=O at y=L or P=O at h=h,(l+n) (51) 

Pressures are expressed as gauge pressures, i.e. P = 0 represents ambient 
pressure. Substitution of these two-conditions gives - 

hW*) = 
nh, 

hIhAl + $I- ~dh,) 

and 

A = LMNMh,(l + n)) -(1 + nMdh,)l 
2nMkAl+ MI - ~dW1 

where 

41 (h) =s$) = -Mp$ c.o$!;;)); ;os;;;)) dh 

under the present circumstances. 
Substituting the above values of J/,(h*) and A in eqn. (50) gives 

UhiMl+ w/L)1 - d~(kAl 
hN,(l + n)I -h&J 

(52) 

(53) 

(54) 

(55) 
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A further integration of the pressure gives the normal load capacity per 
unit length of the bearing system: 

h,(l+n) 

W= ‘pdy=4 s s P dh 
0 o h, 

(56) 

Using eqn. (55), the load capacity of the plane inclined slider is given 
by 

-nh,@l(h,) + 42{kJ(l + ~)1-@2(~o) 

2~kl[h{~,(~ + n)) - dJ,vb)l 
(57) 

where 

@2(h) =~@,(W dh (58) 

If the extent of rotation is small, so that it is reasonable to ignore 
second and higher powers of M compared with the first power of M, the 
expressions for pressure and load capacity given by eqn. (55) and eqns. (57) 
and (58) respectively can be approximated by 

p__““2” +L@+U2 
[ 

1 y 
i 

-1 
n(n + 2) (1 + ny/L)2 11 

and 

W= 
MpUL2 n -- 

4 n+2 

4.2. Exponentially inclined slider 
In this case 

U=-U 

h = h(y) 

P=P(y) 

and eqn. (42) then gives 

(59) 

(60) 

(61) 

(62) 

Integrating eqn. (62) with respect to y and using the condition 

dP 
_= 0 at h = h* 
dy 

(63) 

gives 

(64) 

The film thickness can be expressed at any point as 



h = h, exp(--cuy) 

Using eqn. (65)) eqn. (64) can be written as 

dP 
-=-- l S!+W.J 
dh ah 2 

Integrating eqn. (66) with respect to h gives the following: 

where A is a constant of integration. Using the boundary conditions 

P=O at y=O or P=O at h=h, 

P = 0 at y = -L or P = 0 at h = h, exp(olL) 

we obtain 

CYL 
$,(h*) = - 

&(ho) - @dh, ew(aL)l 

and 

MP U [os(k,) - $s{k, aNaL)) 1% ho + aL@&J A=- 
2.a e3(h,) - @31ho =wWJ)) 

where 

@s(h) =J&) 

Substituting the values of Jl(h*) and A in eqn. (67) gives 

MPU p=- 
2 

y + Lb3h, w%-w)~ - ~dM1 
@s{k, exp(aL)) -@s(k) 
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(65) 

(66) 

(67) 

(63) 

(69) 

(70) 

(71) 

(72) 

A further integration of the pressure gives the normal load capacity per 
unit length of the bearing system: 

WC ‘Pdy=--1 so 
J- 

P 
(73) 

-L 
CY 

h,exp@L) 
hdh 

Using eqn. (72), we obtain the load capacity of the exponentially inclined 
slider: 

W= 
Mp UL2 aL$+(h,) + M%J-@& exp(aL)) 

4 @a% exp(aL)) - @s(ho) I) 
(74) 

where 

G*(h) = j- “(hh) dh (75) 
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When the extent of rotation is small, the expressions for pressure and 
load capacity given by eqn. (72) and eqns. (74) and (75) respectively may be 
approximated by 

MPU p=- I exp(3cYy) - 1 

2 
Y+L 

exp(--3cuL) - 1 I 
(76) 

and 

w = Mp UL 6aL + (2 + 3aL){exp(-3aL) - 13 

1201 1 - exp(-3cYL) 
(77) 

5. Conclusions 

An important qualitative result is that while the load capacity increases 
with increasing coefficient of fluid viscosity for a plane inclined slider or an 
exponentially inclined slider by the classical theory, it is independent of the 
fluid viscosity in the present context for both of the bearing systems [5,6] 
when the extent of rotation is small. This may also indicate that low 
viscosity fluids could be successfully utilized as lubricants. This aspect will 
be further investigated. 

Nomenclature 

h 
R 
h* 
hc 
hi 
ho 
L 
M 
n 
P 

; 

PC 
rk 
t 

U 
ii 

u 
V 

i7 
W 
w 
W 

x 

xi 

film thickness 
dimensionless film thickness 
film thickness at the point of maximum pressure 
characteristic film thickness 
inlet film thickness 
outlet film thickness for the slider 
dimensionless length of the bearing 
rotation number 
hi/h, - 1 
pressure 
modified pressure 
dimensionless pressure 
characteristic velocity 
kth component of the radius vector r 
time 
fluid velocity in the x direction 
dimensionless fluid velocity in the x direction 
dimensionless surface velocity in the x direction 
fluid velocity in the y direction 
dimensionless fluid velocity in they direction 
fluid velocity in the z direction 
dimensionless fluid velocity in the z direction 
load capacity 
coordinate along the span of the bearing system 
external force vector component 
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coordinate along the length of the bearing system 
coordinate across the fluid film 
exponential coefficient for the film thickness 
alternating tensor component 
viscosity of the fluid 
dimensionless viscosity of the fluid 
characteristic viscosity of the fluid 
density of the fluid 
dimensionless density of the fluid 
characteristic density of the fluid 
angular velocity of rotation 
kth component of the angular velocity of rotation 
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