Partons and Jets at the LHC
 Davison E. Soper
 University of Oregon

Kanpur, November 2002

Overview

- How to find new physics at the LHC.
- Direct searches
- Jet cross sections as a probe
- Jet cross section and its errors
- Higher order calculations
- $g-2$ for the muon
- Progress toward NNLO for generic observables
- Perturbative summations
- Parton distributions with real error estimates
- Jet definitions

How will we look for new physics at the LHC?
Look directly.
E.g.

SUSY \Rightarrow squarks $\Rightarrow p+p \rightarrow$ squark + antisquark $+X$.
We use
$d \sigma \approx \sum_{a, b} \int_{0}^{1} d \xi_{A} \int_{0}^{1} d \xi_{B} f_{a / A}\left(\xi_{A}, \mu\right) f_{b / B}\left(\xi_{B}, \mu\right) d \hat{\sigma}^{a b}(\mu)$.

- We need the parton distribution functions $f_{a / A}(\xi, \mu)$.
- We need the hard scattering cross sections $d \hat{\sigma}^{a b}(\mu)$.
- dô has been calculated at next-to-leading order (NLO) for lots of processes of interest.
- The calculation involves a subtraction in $d \hat{\sigma}$ to allow for the emitted gluon being in $d \hat{\sigma}^{a b}(\mu)$.
- These are QCD calculations.

Look indirectly.

E.g.
S.M. $\Rightarrow p+p \rightarrow W^{+}+W^{-}+X$.

S.M. $\Rightarrow p+p \rightarrow$ jet $+\mathrm{jet}+X$.

We still use
$d \sigma \approx \sum_{a, b} \int_{0}^{1} d \xi_{A} \int_{0}^{1} d \xi_{B} f_{a / A}\left(\xi_{A}, \mu\right) f_{b / B}\left(\xi_{B}, \mu\right) d \hat{\sigma}^{a b}(\mu)$.
If anything goes wrong it must be new physics (if the discrepancy is outside the errors).

Jet cross sections and new physics signatures

- Suppose there is a new interaction at a scale Λ.

If $\Lambda<E_{T}^{\max }$:

a) New particle with mass M that decays to two jets.

* One jet inclusive cross section

Look for threshold effect at $E_{T}=M / 2$.

* Two jet inclusive cross section

Look for resonance structure at $M_{\mathrm{Jet}-\mathrm{Jet}}=M$.

b) New particle with mass M that decays to 3 jets, 4 jets, 2 jets + invisible particles, 2 jets + leptons; new particles that are produced in pairs...

* In principle, this contributes to one and two jet inclusive cross sections, but background \gg signal.
\Rightarrow look for this directly.

If $\Lambda>E_{T}^{\max }$:
Get new terms in the effective lagrangian like

$$
\Delta \mathcal{L}=\frac{g^{\prime}}{\Lambda^{2}}(\bar{\psi} \psi)^{2}
$$

Then the one jet inclusive cross section is changed:

$$
\frac{d \sigma_{\mathrm{Jet}}}{d E_{T}} \approx\left(\frac{d \sigma_{\mathrm{Jet}}}{d E_{T}}\right)_{0} \times\left[1+(\text { const. }) \frac{g^{\prime}}{\alpha_{s}} \frac{E_{T}^{2}}{\Lambda^{2}}\right]
$$

Then the two jet inclusive cross section is also changed.

Extra dimensions

What if space has more than three dimensions, with the extra dimensions rolled into a little ball of size R ?

Then a quark or gluon is pointlike when viewed by a probe with wavelength $\lambda \gg R$, but not when viewed by a probe with wavelength $\lambda \lesssim R$.

Then the one jet inclusive cross section should be suppressed by a form factor something like:

$$
\frac{d \sigma_{\mathrm{Jet}}}{d E_{T}} \approx\left(\frac{d \sigma_{\mathrm{Jet}}}{d E_{T}}\right)_{0} \times \exp \left(-R E_{T}\right)
$$

(See, for example K. Y. Oda and N. Okada, arXiv:hepph/0111298.)

The evidence so far

- QCD works up to the highest E_{T} probed by Fermilab Inclusive Jet cross section

The two jet inclusive cross section

Find the two jets in each event with the largest E_{T}. Study

$$
\frac{d \sigma}{d M_{J J} d \eta_{J J} d \eta^{*}}
$$

- $\eta_{J J}=\left(\eta_{1}+\eta_{2}\right) / 2=$ rapidity of jet-jet c.m. system
- $\eta^{*}=\left(\eta_{1}-\eta_{2}\right) / 2=$ rapidity of first jet as viewed in the jet-jet c.m. system.
- $\eta^{*}=-\ln \tan \left(\Theta^{*} / 2\right)$.

- $d \sigma / d M_{J J}$ has essentially the same information as the one jet inclusive cross section.
- However, a resonance that decays to two jets would appear as a bump.
- The two jet angular distribution contains very important information.
- Look at the cross section as a function of η^{*} for a fixed bin of $M_{J J}$ and $\eta_{J J}$.

Vector exchange versus new terms

- Vector boson exchange gives the characteristic behavior

$$
\frac{d \sigma}{d \eta^{*}} \propto \exp \left(2 \eta^{*}\right) \quad \quad \eta^{*} \gg 1
$$

- An s-wave distribution gives few events with $\eta^{*}>1$.

A convenient angle variable is

$$
\chi=\exp \left(2 \eta^{*}\right)
$$

so

$$
\frac{d \sigma}{d \chi}=\frac{1}{2 \exp \left(2 \eta^{*}\right)} \frac{d \sigma}{d \eta^{*}}
$$

The QCD cross section is quite flat for $\chi \gg 1$.

In contrast, a new physics signal should fall off beyond $\chi \approx 3$.

Comparison with Tevatron data

Here we compare QCD with D0 data for dijets jets with large $M_{J J}$.

The CDF data for $d \sigma / d E_{T}$ was showing a distinct excess at large E_{T} (not seen by D0). But the dijet angular distribution (from both experiments) showed that there was no new physics.

The prediction for LHC

One jet inclusive cross section $d \sigma / d P_{T} d y$ averaged over $-1<y<1$, versus P_{T}.

- Successive combination jet definition, k_{T} style, with joining parameter $D=1$.
- $\mu_{\mathrm{UV}}=\mu_{\text {coll }}=P_{T} / 2$.
- CTEQ5M partons.

Theory errors (perturbative)

- Calculation includes order α_{s}^{2} and α_{s}^{3}.
- Order α_{s}^{4} and higher are left out.
- The missing α_{s}^{4} terms are probably not smaller than terms we know about
const. $\times \alpha_{s}^{4} \ln \left(2 \mu / E_{T}\right)$
where μ is μ_{UV} or $\mu_{\text {coll }}$.
- Investigate by examining

$$
\Delta\left(\mu_{\mathrm{coll}}, \mu_{\mathrm{UV}}\right)=\frac{d \sigma\left(\mu_{\mathrm{UV}}, \mu_{\mathrm{coll}}\right) / d E_{T}}{d \sigma\left(E_{T} / 2, E_{T} / 2\right) / d E_{T}}-1
$$

$$
\begin{gathered}
\Delta\left(\mu_{\mathrm{UV}}, \mu_{\text {coll }}\right) \text { for }\left(\mu_{\mathrm{UV}}, \mu_{\text {coll }}\right) \text { choices } \\
\left(E_{T} / 4, E_{T} / 4\right),\left(E_{T}, E_{T} / 4\right),\left(E_{T} / 4, E_{T}\right),\left(E_{T}, E_{T}\right)
\end{gathered}
$$

Theory errors (power suppressed)

There are errors of the form

$$
\frac{d \sigma}{d E_{T}}=\left(\frac{d \sigma}{d E_{T}}\right)_{\mathrm{NLO}}\left\{1+\frac{\Lambda_{1}}{E_{T}}+\frac{\Lambda_{2}^{2}}{E_{T}^{2}}+\cdots\right\}
$$

from

- hadronization
- k_{T} kicks to incoming partons
- splash-in
- splash-out

Rough estimates suggest $\Lambda_{i} \lesssim 10 \mathrm{GeV}$ for Fermilab.
(Maybe somewhat more for LHC).
This is significant for comparison of jets at $\sqrt{s}=630 \mathrm{GeV}$ to jets at $\sqrt{s}=1800 \mathrm{GeV}$ at Fermilab.
These should be negligible for jets with $E_{T}>200 \mathrm{GeV}$ at LHC.

Parton distribution errors

- For $x<0.3$, I suppose we know parton distributions to 10%, so jet cross sections to 20%.
- For larger x, knowledge of the gluon distribution is poor.
- To see what can happen, try CTEQ5HJ partons.
* Enhanced large x gluons to fit average of CDF and D0 jet data at high E_{T}.
Plot

$$
\Delta=\frac{d \sigma(C T E Q 5 H J) / d E_{T}}{d \sigma(C T E Q 5 M) / d E_{T}}-1
$$

- It would be nice to have parton distributions with errors.
- Giele and Keller have published ideas on this.
- CTEQ has partially accomplished this.

Reducing the perturbative theory error

We should do the calculation at NNLO.

- The premier example is $g-2$ for the muon. Experiment E821 at Brookhaven gives

$$
(g-2) / 2=11659203(8) \times 10^{-10}
$$

The corresponding calculation includes QED calculations at $N^{4} L O$, i.e. α^{5}. The calculation also includes two loop graphs with W and Z bosons. There are also QCD contributions, which cannot be purely perturbative because the momentum scale is too low. One contribution had a sign error, fixed by Knecht and Nyffeler, who found that this graph contributes $+8.3(1.2) \times 10^{-10}$.

The theory result is

$$
(g-2) / 2=11659169(8) \times 10^{-10} .
$$

- The revised theoretical contribution helps.
- There is perhaps more theoretical uncertainty than indicated by the (8).
- This has a bearing on LHC physics because it suggests beyond the Standard Model stuff.
- $N^{k} L 0$ calculations matter.

The calculations at NNLO and beyond are successful because they use special tricks based on calculating a simple measurable quantity. It is harder to calculate for generic infrared safe observables.

The first results will come for $e^{+} e^{-} \rightarrow 3$ jets.

Two cut graphs for $e^{+} e^{-} \rightarrow 3$ jets
Standard analytical/numerical method:

- Need analytic result for the two loop virtual graph.
* Regularized using $4-2 \epsilon$ dimensions.
- Need subtraction scheme for graphs with 4 and 5 final state partons.

Recent progress

Standard analytical/numerical method:

- Need analytic result for the two loop virtual graphs.
* Done
- Need subtraction scheme for graphs with 4 and 5 final state partons.
* In progress

The progress is being made because there are several very good people working on this. For example,

- C. Anastasiou, M. Beneke, Z. Bern, K. G. Chetyrkin, L. Dixon, T. Gehrmann, E. W. Glover, S. Laporta, S. Moch, C. Oleari, E. Remiddi, V. A. Smirnov, J. B. Tausk, P. Uwer, O. L. Veretin, S. Weinzierl.

At NLO, it is possible to do this kind of calculation by a completely numerical method. This offers evident advantages in flexibility. Perhaps it could help at NNLO. See D. E. Soper, Phys. Rev. Lett. 81, 2638 (1998).

Beyond fixed order
Simply calculating Feynman diagrams at a fixed order of perturbation theory is not enough.

Use the factorization property of QCD

$$
\begin{aligned}
& \frac{d \sigma}{d E_{T} d y} \approx \\
& \sum_{a, b} \int_{x_{A}}^{1} d \xi_{A} \int_{x_{B}}^{1} d \xi_{B} f_{a / A}\left(\xi_{A}, \mu\right) f_{b / B}\left(\xi_{B}, \mu\right) \frac{d \hat{\sigma}^{a b}(\mu)}{d E_{T} d y} .
\end{aligned}
$$

Sum an infinite number of important contributions

- $\sum C_{n}\left[\alpha_{s} \log \left(\mu^{2} / \mu_{\text {data }}^{2}\right)\right]^{n}$
- $\sum C_{n}\left[\alpha_{s} \log ^{2}\left(k_{T}^{2} / Q^{2}\right)\right]^{n}$
- $\sum C_{n}\left[\alpha_{s} \log (1 / x)\right]^{n}$
- $\sum C_{n}\left[\alpha_{s} \log ^{2}(1-x)\right]^{n}$

The first of these is performed by using the renormalization group. The others will be discussed at least briefly in my talk on perturbative summations.

Parton distribution functions

$$
f_{a / p}(x, \mu) \quad a=g, u, \bar{u}, d, \bar{d}, \ldots
$$

- Important for everything.
- Determined from data for many processes (global fits).
- Produced by CTEQ and MRS.
- Charm and bottom distributions are calculated, based an expansion in powers of $\alpha_{s}\left(m_{c}\right)$ and $\alpha_{s}\left(m_{b}\right)$ respectively.
- Maybe this isn't such a good approximation.
- We don't know the gluon distribution at large values of x (say 0.5) to within a factor of 2 .
- So far, error analysis by MRS and CTEQ consists of trying different values of gluon parameters, α_{s}, etc and seeing how far one can go before the fit is evidently bad.

Why don't they give us parton distributions with errors?

- It's harder than you think.
- CTEQ has, in part.

Why parton distributions with errors would seem strange

- With a real error analysis involving roughly 1400 degrees of freedom, we would have a plot of χ^{2} for some observable, say α_{s}, that looks like this:

- The difference in χ^{2} translates to a likelihood ratio

$$
\frac{\mathcal{L}\left(\alpha_{s}\right)}{\mathcal{L}_{\text {best }}}=\exp \left\{-\frac{\chi^{2}\left(\alpha_{s}\right)-\chi_{\text {best }}^{2}}{2}\right\}
$$

- Thus a $\Delta \chi^{2}=9$ gives $\mathcal{L}\left(\alpha_{s}\right) / \mathcal{L}_{\text {best }}=\exp (-4.5) \approx 1 / 90$. - Any value of α_{s} beyond $\Delta \chi^{2}=9$ can be ruled out with high confidence.
- But the fits to the world's data corresponding to much of the disallowed range of α_{s} would seem perfectly fine: normal fluctuations in χ^{2} for 1400 degrees of freedom are about 50 .

Parton error analysis

- In order to take χ^{2} or an equivalent statistic seriously, one must be very careful.
- It is easy to go seriously wrong.
- Suppose that we judge a calculated cross section to have a theoretical error such that a "perfect" Standard Model prediction could differ by 5% in the mid-range of some variable x :

x

- But suppose that we ignore this theoretical error.
- Then if the data look like this

x

we could erroneously add many units to χ^{2} when we should just add one unit of χ^{2} for the theory being " 1σ " off.

Where are we?

- Alekhin produced parton distributions with errors based on DIS data in 1996.
- Giele, Keller, and Kosower have developed a method for doing the analysis if the relevant errors are available.
- Their method is flexible so it could handle non-gaussian errors.
- More than mathematics is needed.
- A realistic treatment of errors would involve a lot of judgment by the fitters as to
- experimental systematic errors
- theoretical errors
- The necessary judgment would involve lots of analysis and debate.
- CTEQ's latest parton distribution set, CTEQ6, comes with errors.

CTEQ6

J. Pumplin, D. R. Stump, J. Huston, H. L. Lai, P. Nadolsky and W. K. Tung, JHEP 0207, 012 (2002)

These parton distribution functions come with errors:

Uncertainty bands for the u-quark and gluon distribution functions at $Q^{2}=10 \mathrm{GeV}^{2}$. The curves corresponds to CTEQ5M1(solid), CTEQ5HJ (dashed), and MRST2001 (dotted).

What do the error bands mean?

$$
f_{a / p}\left(x, Q_{0}^{2}\right)=f_{a / p}^{0}\left(x, Q_{0}^{2}\right)+\sum_{i=1}^{20} \lambda_{i} h_{a / p}^{i}\left(x, Q_{0}^{2}\right)
$$

so that

$$
\chi^{2}=\chi_{\min }^{2}+\sum_{i=1}^{20} \lambda_{i}^{2}
$$

Then the error band is the envelope of the forty curves obtained with one λ_{i} set to $+T$ or $-T$ and the others set to 0 , where the "tolerance" is $T=10$. (Actually, what was done was just slightly more complicated than this.)

- This gives some impression of the uncertainty.
- A better estimate would be

$$
\Delta f_{a}=\left\{\sum_{i=1}^{20}\left[h_{a / p}^{i}\left(x, Q_{0}^{2}\right)\right]^{2}\right\}^{1 / 2}
$$

- If χ^{2} means what it is supposed to, the error band with $T=10$ surely overestimates the uncertainty.

Is χ^{2} the "real" χ^{2} ?

- Experimental systematic errors are included wherever available.
- But theoretical systematic errors are not included.
- Some of the data are not consistent with their errors.

	N_{e}	χ_{e}^{2}	χ_{e}^{2} / N_{e}
BCDMS p	339	377.6	1.114
BCDMS d	251	279.7	1.114
H1a	104	98.59	0.948
H1b	126	129.1	1.024
ZEUS	229	262.6	1.147
NMC F2p	201	304.9	1.517
NMC F2d $/ \mathrm{p}$	123	111.8	0.909
D0 jet	90	64.86	0.721
CDF jet	33	48.57	1.472

The χ^{2} for D 0 jet is too low. The χ^{2} for CDF jet is somewhat to high. The χ^{2} for NMC F2p is way too high. See the figure on the next page to see why χ^{2} is too high (Fig NMC.eps).

NMC proton data versus CTEC6M fit.

It appears that there is no way that a smooth curve could fit the data much better than CTEQ6 fits the data here. I conclude that the CTEQ6 approach is OK under the circumstances.

Jet definitions

The most common definition in hadron-hadron collisions is based on cones.
The simple starting point.

- Use rapidity η and azimuthal angle ϕ.
- There is a jet axis with angles η_{J}, ϕ_{J}.
- Particles with $\left(\eta-\eta_{J}\right)^{2}+\left(\phi-\phi_{J}\right)^{2}<R^{2}$ are in the jet. The fine print.
- Cones can overlap.
- There special rules to say what to do.

- With the special rules, the cone definition is not simple. (See studies of R. Hirosky).
- Unless one is very careful, the algorithm is not infrared safe.

Infrared safety

To be avoided:

$$
\frac{d \sigma}{d E_{T}}=\left(\frac{d \sigma}{d E_{T}}\right)_{\text {pert }} \times\left\{1+\alpha_{s}^{N} F_{\mathrm{IR}}\right\}
$$

where F_{IR} is an unknown factor of order 1 .
The test:

- Collinear splittings can't matter.
- Soft particles can't matter.

Sample algorithm:
"Pick largest E_{T} calorimeter call not already included in a jet as a 'seed'; all cells with $\left(\eta-\eta_{\text {seed }}\right)^{2}+\left(\phi-\phi_{\text {seed }}\right)^{2}<$ $(0.7)^{2}$ and not already in a jet become the next jet, with $p_{\mathrm{jet}}^{\mu}=\sum_{i} P_{i}^{\mu}$ and $E_{T, \text { jet }}=\left|\vec{P}_{T, \text { jet }}\right| . "$

η

The sample algorithm is not IR safe

η
If the parton that made seed 2 splits, it changes the result.

η

A simple jet algorithm

The k_{T} algorithm is based on the successive combination algorithms used in $e^{+} e^{-}$physics but is adapted for hadron collisions.

- At each stage, one has a collection of protojets with variables $\left(P_{T, i}, y_{i}, \phi_{i}\right)$.
- y_{i} is the true rapidity of the protojet.
- To start with the each protojets is an observed particle (or a group of particles in a single calorimeter tower). - At the end, the protojets have been grouped into jets.

The rules

- For each protojet i, define

$$
d_{i}=P_{T, i}^{2}
$$

and for each pair of protojets (i, j) define

$$
d_{i, j}=\min \left[P_{T, i}^{2}, P_{T, j}^{2}\right]\left[\left(y_{i}-y_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}\right)^{2}\right] / D^{2}
$$

where D is a parameter $($ say $D=1)$.
(1) Find the smallest of the d_{i} and $d_{i, j}$.
(2) If the smallest is a d_{i}, remove i from the list of protojets and add it to the list of jets.
(3) If the smallest is a $d_{i, j}$, combine protojets i and j.

$$
P^{\mu}=P_{i}^{\mu}+P_{j}^{\mu}
$$

(4) GO TO 1

