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Overview

• Four kinds of partial summations of perturbation theory.
• Scale change (renormalization group)
• Transverse momentum distributions
• Small x behavior (BFKL)
• Large x behavior (threshold summation)

• Does threshold sum affect the LHC jet cross section.
• Transverse momentum summation

• b space and the ABC formula
• Estimating predictive power
• What to do with large b
• Main steps in the derivation



Beyond fixed order

Simply calculating Feynman diagrams at a fixed order of
perturbation theory is not enough.

Use the factorization property of QCD

dσ

dET dy
≈

∑
a,b

∫ 1

xA

dξA

∫ 1

xB

dξB fa/A(ξA, µ) fb/B(ξB , µ)
dσ̂ab(µ)
dET dy

.

Sum an infinite number of important contributions

•
∑

Cn [αs log(µ2/µ2
data)]

n + · · ·
•

∑
Cn [αs log2(k2

T /Q2)]n + · · ·
•

∑
Cn [αs log(1/x)]n + · · ·

•
∑

Cn [αs log2(1 − x)]n + · · ·



Evolution

dσ

dET dy
≈

∑
a,b

∫ 1

xA

dξA

∫ 1

xB

dξB fa/A(ξA, µ) fb/B(ξB , µ)
dσ̂ab(µ)
dET dy

.

Parton scale set to µ = ET , say, but parton densities de-
termined from data at much lower scales µdata.
The parton evolution equation sums a series

∑
Cn [αs log(µ2/µ2

data)]
n + · · ·

• This is normally done with the next-to-leading order
evolution kernel.
• Fractional errors: αs(µdata)3 log(µ2/µ2

data).
• We have partial information about the kernel at N3LO.
• Inaccuracy in evolution will probably not be a limiting
factor in predictions.



Transverse momentum distributions

If we produce a heavy particle (say a W boson) in Run
II we may want to know the distribution of its transverse
momentum kT .
• The hard scale of the process is the W -boson mass M .
• At leading order, dσ/d2�kT ∝ δ(�kT ).

• At higher orders, bremsstrahlung gives nonzero �kT .
• For k2

T � M2 there are large logarithms and we need to
sum the most important contributions.

∫ P 2
T

0

dk2
T

dσ

dk2
T

∼ σ0

∑
Cn [αs log2(P 2

T /M2)]n + · · ·

• Methods for treating this have long been known.
• The key idea, “Fourier transform,” was invented by Parisi
and Petronzio.
• There has been some debate about what methods are
most convenient.



Small x summation

• Some of Run II physics will involve “small x.”
• Define

xA =
∑

k+
n

p+
A

xB =
∑

k−
n

p−B

where the sum runs over particles in measured jets, etc.
• xA and xB can be among the measured variables.
• If not, other variables typically play the same role.
• In many processes of interest, xA

√
s/2 � 1 GeV but

xA � 1.

• Consider xA � 1 and, for simplicity, suppress all nota-
tion concerning xB and hadron B.

σ =
∫ 1

xA

dξA fa/A(ξA) σ̂(xA/ξA)

• Potentially large logs occur in perturbation theory:

∆σ̂ ∝ σ0 αn
s logn−1(xA/ξA)

• One knows something about summing such logs (BFKL).
• The small x logs are interesting.



Is small x summation typically needed for the LHC?

That is, if one doesn’t worry about small x summation in
a process not designed to look for “small x” effects, will
one make a big mistake?

∆σ = σ0 αn
s

∫ 1

x

dξ

ξ
ξf(ξ) logn−1(x/ξ)

Case 1: ξ f(ξ) ∝ 1 for small ξ. Then ∆σ ∝ logn(x).

• Say x = 10−3, n = 3, ξ f(ξ) = (1 − ξ)4. Then

∫ 1

x

dξ

ξ

(1 − ξ)4

(1 − x)4
log2(x/ξ) ≈ 44.



Case 2: ξ f(ξ) ∝ ξ−A for small ξ with A > 0. Then ∆σ is
finite for x → 0.
• Say x = 10−3, n = 3, ξ f(ξ) = ξ−0.4(1 − ξ)4. Then∫ 1

x

dξ

ξ

ξ−0.4(1 − ξ)4

x−0.4(1 − x)4
log2(x/ξ) ≈ 9.7.

Conclusion: Small x summation is less needed than you
might think.



x → 1 summation

Instead of the small x problem,

∆σ = σ0 αn
s

∫ 1

x

dξ

ξ
ξf(ξ) logn−1(x/ξ)

we can have a large x problem,

∆σ = σ0 αn
s

∫ 1

x

dξ

ξ
ξf(ξ)

[
log2n−1(1 − x/ξ)

1 − x/ξ

]
+

.

• Using the + prescription, this is

∆σ = σ0 αn
s

∫ ∞

x

dξ

{
f(ξ) − x2

ξ2
f(x)

}
log2n−1(1 − x/ξ)

1 − x/ξ
.

• For x → 1 the range of the integral over ξ in the first
term is severely limited because f(ξ) = 0 for ξ > 1, while
there is no such restriction in the second term.
• This gives ∆σ ∝ log2n(1 − x).



Is x → 1 summation typically needed for LHC?

• ∆σ ∝ logn(1 − x) is not important for the LHC.
• What is important is that if ξ f(ξ) ∝ ξ−A near ξ = x,
and if A � 1, then

∆σ ∝ logn(A).

For a measure of A for the jet cross section, define

A =
d log

(
E3

T dσ/dET

)
d log ET

Here it is

Conclusion: x → 1 summation is more needed than you
might think.



Result of an actual calculation

Owens and Kidonakis have calculated the contributions
proportional to

σ0 α2
s

[
log3(1 − x/ξ)

1 − x/ξ

]
+

and σ0 α2
s

[
log2(1 − x/ξ)

1 − x/ξ

]
+

in the summation of threshold logs. For LHC, they find

The effect could have been large, but it is small.

These results are courtesy of J. F. Owens. The analy-
sis for jets at Fermilab is published in N. Kidonakis and
J. F. Owens, Phys. Rev. D 63, 054019 (2001) and uses
N. Kidonakis, G. Oderda and G. Sterman, Nucl. Phys. B
525, 299 (1998); E. Laenen, G. Oderda and G. Sterman,
Phys. Lett. B 438, 173 (1998).



Comments the transverse momentum summation

I consider p + p̄ → Z + X. We look at the transverse
momentum distribution of the Z when p2

T � M2
Z :

F (pT ) =
dσ

d2pT dy

∣∣∣∣
y=0

Then
F (pT ) =∑
a,b

∫
dxA fa/A(xA)

∫
dxB fb/B(xB) F̂ab(pT , xA, xB)

We calculate F̂ in perturbation theory. Let

L = log(M2
Z/p2

T ) αs = αs(pT )

Then

F̂ = αs

[
1
p2

T

(C11L + C10) + Y1

]

+ α2
s

[
1
p2

T

(
C23L

3 + C22L
2 + C21L + C20

)
+ Y2

]

+ α3
s

[
1
p2

T

(
C35L

5 + C32L
4 + · · · + C30

)
+ Y3

]
+ · · ·

Here YJ = YJ(p2
T , xA, xB) with p2

T YJ → 0 as p2
T → 0.

• The first row is not useful unless αsL
2 � 1.

• The sum of the first column is not useful unless αsL
2 <∼ 1.



The ABC’s of the pT distribution

Following Parisi & Petronzio, we write the singular parts
of F as a Fourier transform. Then, after a lot of analysis
we arrive at

F (pT ) =∑
a,b,j

∫
dxA fa/A(xA)

∫
dxB fb/B(xB)

∫
d2b exp(ipT · b)

× exp

(
−

∫ M2
Z

1/b2

dµ2

µ2

[
A(αs(µ)) log

(
M2

Z

µ2

)
+ B(αs(µ))

])

× ẽ2
j Cja

(
xA, αs(1/b)

)
Cj̄b

(
xB , αs(1/b)

)
+ Y

(
pt, αs(pT )

)
• The Y term is evaluated perturbatively evaluating F and
subtracting the parts with 1/p2

T singularities.
• The A, B, C functions have perturbative expansions.
• For large b2, we will need to put in something non-
perturbative for A, B, C. I will return to this question.

See J. C. Collins and D. E. Soper, Nucl Phys. B193 (1981) 381 and

J. C. Collins, D. E. Soper, and G. Sterman, Nucl. Phys. B250 (1985)

199, plus subsequent works by G. Sterman and collaborators.



Counting logs in the Sudakov exponent

• Just going to b space is a big help. Consider the exponent
S(b2).

F (pT ) − Y
(
pt, αs(pT )

)
=∑

a,b,j

∫
dxA fa/A(xA)

∫
dxB fb/B(xB)

∫
d2b exp(ipT · b)

× exp(−S(b)) × ẽ2
j Cja

(
xA, αs(1/b)

)
Cj̄b

(
xB , αs(1/b)

)
.

Let
L = log(M2

Z b2) αs = αs(1/b)

Then
S(b) = αs

(
C12L

2 + C11L + C10

)
+ α2

s

(
C23L

3 + C22L
2 + C21L + C20

)
+ α3

s

(
C34L

4 + C33L
3 + · · · + C30

)
+ · · ·

• In S(b) there is only one log per loop, plus 1.
• I.e. half of the logs are gone.

S(b) = Lf(αsL)

+ g0(αsL) + αs g1(αsL) + α2
s g2(αsL) + · · · .

• f gives the leading log series.
• g0 gives the next-to-leading logs.
• Knowing a few gj is useful if αsL <∼ 1.



It’s better than that

In the ABC formula,

S(b) =
∫ M2

Z

1/b2

dµ2

µ2

[
A(αs(µ)) log

(
M2

Z

µ2

)
+ B(αs(µ))

]

Again let

L = log(M2
Z b2) αs = αs(1/b)

The functions A and B have perturbative expansions start-
ing at order αs.
• Suppose that we know enough terms in the β function
to evaluate αs(µ) as accurately as we want.
• Suppose that L is big but αN

s L <∼ 1.
• If we know 2N terms in A and N terms in B, then the
remainder is proportional to

Cα2N+1
s L2 + C ′αN+1

s L = αs

[
C(αN

s L)2 + C ′(αN
s L)

]
<∼ αs

• That is, there is real content in the formula for S(b2)
beyond just knowing that there is only one log per loop,
plus 1.
• This extra information gives us useful error estimates.



What about large b?

This is a matter of taste, but here is one sensible procedure.

F (pT ) =∑
a,b,j

∫
dxA fa/A(xA)

∫
dxB fb/B(xB)

∫
d2b exp(ipT · b)

× exp

(
−

∫ M2
Z

1/b2∗

dµ2

µ2

[
A(αs(µ)) log

(
M2

Z

µ2

)
+ B(αs(µ))

])

× ẽ2
j Cja

(
xA, αs(1/b∗)

)
Cj̄b

(
xB , αs(1/b∗)

)
)

× exp
(
−g1(b) log

(
M2

Z

Q2
0

)
− gj/A(xA, b) − gj̄/B(xB , b)

)
+ Y

(
pt, αs(pT )

)
where

b∗ =
b√

1 + b2/b2
max

.

• Then αs(µ) and αs(b∗) are perturbative.
• The functions g are nonperturbative.
• The structure of the non-perturbative part follows from
the original structure of the formula.
• The g functions should vanish for b → 0.
• Fit them to experiment.



More about large b

• Should we be distressed that if g(b) ∝ b2 then there
is some influence of “non-perturbative” physics even for
b < bmax?
• No. There are always power suppressed effects that
one usually ignores, but sometimes estimates with “renor-
malon” techniques.

• Wouldn’t it be nice to get rid of the nonperturbative
uncertainty by working directly in kT space?
• You would lose the special structure that exists in b space.
• S(b) heavily damps large b is “MZ” is large.



How the theory works

• The real derivation is for e+e−.
• The axial gauge used is not so well defined. It might be
better to use Feynman gauge with

ψ(x) exp(
∫ 0

−∞
dλ n · A(xµ + λnµ))

in the operator definition of P below.

Study the unintegrated parton distribution functions,

P(x,kT , ζ)

• x is the momentum fraction of the observed parton.
• kT is its transverse momentum.
• We work in the gauge A ·n = 0, where n will point in the
3-direction in the frame in which the Z boson has Pz = 0,
with n2 = −1.

ζ = (2P · n)2

• The use of something that is not boost invariant in the
definition is crucial. Look for log2(k2

T /ζ).



Differentiate with respect to the gauge vector

∂

∂ log ζ
P(x,kT , ζ)

Evaluate this using the gauge invariance of the theory. Get

with a special rule for the square vertex.



Examine leading regions

∂

∂ log ζ
P(x,kT , ζ)

• The gluon that attaches to the square vertex can be hard
(all of its momentum components big).
• The gluon that attaches to the square vertex can be soft
(all of its momentum components small).
• The blue subgraph contains lots of collinear partons.
• The structure of the square vertex suppresses a collinear
gluon attachment.



Use soft gluon approximations

For k+ � k−, kj
T and all components of qµ small,

(/k+/q)/ε/k ≈ (/k+/q)γ+/kε− = (/k+/q)γ+q−/k
ε−

q−
≈ (/k+/q)/q/k

ε−

q−
.

This gives

∂

∂ log ζ
P(x,kT , ζ) ≈

∫
dlT

[
δ(lT )G(ζ) + K(lT )

]
× P(x,kT + lT , ζ).

• Fourier transforming to b simplifies this.
• We get a differential equation.
• The solution is an exponential.
• Use renormalization group to get structure of G + K.

• This leads to the ABC formula.


