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DOFOR k = 1,n
DOFOR i =1, k— 1
sum = 0.
DOFOR G =1, 71— 1
SUm = sum + ayj - ay;
END DO
8y = (dg; — sumlfay;
END DO
sum = 0.
DOFOR j =1, k — 1
sum = sum + &y
END OO
a = Vau — sum
END D0

=

and Eq. (11.4) yields

Ly = \Jaz — 13 — %, = /979 — (22.454)% — (20.917)? = 6.1101

Thus, the Cholesky decomposition yields

2.4495
[L]=| 6.1237 4.1833
22.454 20917 6.1101

The validity of this decomposition can be verified by substituting it and its trans-
pose into Eq. (11.2) to see if their product yields the original matrix [A]. This is left for an
exercise.

FIGURE 11.3
Pseudocode for Cholesky's (U
decomposition algorithm.

11.2

Figure 11.3 presents pseudocode for implementing the Cholesky decomposition algo-
rithm. It should be noted that the algorithm in Fig. 11.3 could result in an execution error it
the evaluation of ay involves taking the square root of a negative number. However, for
cases where the matrix is positive definite,' this will never occur, Because many symmet-
ric matrices dealt with in engineering are, in fact, positive definite, the Cholesky algorithm
has wide application. Another benefit of dealing with positive definite symmetric matrices
is that pivoting is not required to avoid division by zero. Thus, we can implement the algo-
rithm in Fig. 11.3 without the complication of pivoting.

GAUSS-SEIDEL

Iterative or approximate methods provide an alternative to the elimination methods de-
scribed to this point. Such approaches are similar to the techniques we developed to obtain
the roots of a single equation in Chap. 6. Those approaches consisted of guessing a value
and then using a systematic method to obtain a refined estimate of the root. Because the
present part of the book deals with a similar problem—obtaining the values that simulta-

neously satisfy a set of equations—we might suspect that such approximate methods could
be usetful in this context.

The Gauss-Seidel method is the most commonly used iterative method. Assume that
we are given a set of n equations:

[Al{X]} = (B}

Suppose that for conciseness we limit ourselves to a 3 x 3 set of equations. If the diagonal
elements are all nonzero, the first equation can be solved for x|, the second for x;, and the
third for x3 to yield

by — ajaxy —aj3x;

XN=——""2 (11.5a)
day

'A positive definite maitrix is one for which the product {X 1T [AlX]) is greater than zero for all nonzero
vectors {X}.
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by — anx) — anx;
xy= AT T OB (11.5b)
an
by — a3y x| — anpx
= DA A TR (11.5¢)
a3z
Now, we can start the solution process by choosing guesses for the x’s. A simple way
to obtain initial guesses is to assume that they are all zero. These zeros can be substituted
into Eq. (11.5a), which can be used to calculate a new value for x; = by /ay;. Then, we sub-
stitute this new value of x; along with the previous guess of zero for .x3 into Eq. (11.50) to
compute a new value for xa. The process is repeated for Eq. (11.5¢) to calculate a new esti-
mate for x3. Then we return to the first equation and repeat the entire procedure until our
solution converges closely enough to the true values. Convergence can be checked using
the criterion [recall Eq. (3.5)]
i—1
x] —x] :
leai|l = - 100% < & (11.6)
2
1
for all i, where j and j — 1 are the present and previous iterations.
EXAMPLE 11.3  Gauss-Seidel Method

Problem Statement.  Use the Gauss-Seidel method to obtain the solution of the same sys-
tem used in Example 10.2:

31 —0.1x2—02x3= 7.85
0.lx; + 7x3 —03x3=-19.3
03x) —02x 4+ 10x3= 714

Recall that the true solutionis x; =3, x; = —2.5, and x3=7.
Solution.  First, solve each of the equations for its unknown on the diagonal.

_7.85+0.1x2 + 0.2x3

3 El11.3.1
X 3 ( )
—19.3 — 0.1x; + 0.3x3
X = (E11.3.2)
7
71.4 —0.3x; + 0.2x2
X3 = = (E11.3.3)

By assuming that x; and x3 are zero, Eq. (E11.3.1) can be used to compute

_?.85+0+0

3 =2.616667

Xl
This value, along with the assumed value of x3 = 0, can be substituted into Eq. (E11.3.2)
to calculate

=193 - 0.1(2.616667) + 0

Xy = 7 = —2.794524
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The first iteration is completed by substituting the calculated values for x; and x; into
Eq. (E11.3.3) to yield

71.4 —0.3(2.616667) + 0.2(—2.794524
X3 = ( l{)} O ) = 7.005610

For the second iteration, the same process is repeated to compute

7.85 + 0.1(=2.794524) + 0.2(7.005610)

X = - = 2.990557 e = 0.31%
—19.3 — 0.1(2.990557) + 0.3(7.005610

i = ( - ) +0.3( ) — 2499625 &, = 0.015%
71.4 — 0.3(2.990557) + 0.2(—2.499625

X3 = [ 1{)} A ) _ 7.000291 le,| = 0.0042%

The method is, therefore, converging on the true solution. Additional iterations could be
applied to improve the answers. However, in an actual problem, we would not know the
true answer a priori. Consequently, Eq. (11.6) provides a means to estimate the error. For
example, for x;,

2.990557 — 2.616667

g [ 100% = 12.5%
(Ea.1l 2.990557 ¢ ¢

For x; and x3, the error estimates are |, 2| = 11.8% and |e, 3| = 0.076%. Note that, as was
the case when determining roots of a single equation, formulations such as Eq. (11.6) usu-
ally provide a conservative appraisal of convergence. Thus, when they are met, they ensure
that the result is known to at least the tolerance specified by &,.

As each new x value is computed for the Gauss-Seidel method, it is immediately used
in the next equation to determine another x value. Thus, if the solution is converging, the
best available estimates will be employed. An alternative approach, called Jacobi iteration,
utilizes a somewhat different tactic. Rather than using the latest available x’s, this tech-
nique uses Eq. (11.5) to compute a set of new x’s on the basis of a set of old x’s. Thus, as
new values are generated. they are not immediately used but rather are retained for the next
iteration.

The difference between the Gauss-Seidel method and Jacobi iteration is depicted in
Fig. 11.4. Although there are certain cases where the Jacobi method is useful, Gauss-
Seidel’s utilization of the best available estimates usually makes it the method of preference.

11.2.1 Convergence Criterion for the Gauss-Seidel Method

Note that the Gauss-Seidel method is similar in spirit to the technique of simple fixed-point
iteration that was used in Sec. 6.1 to solve for the roots of a single equation. Recall that
simple fixed-point iteration had two fundamental problems: (1) it was sometimes noncon-
vergent and (2) when it converged, it often did so very slowly. The Gauss-Seidel method
can also exhibit these shortcomings.
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FIGURE 11.4
Graphical depiction of the difference between (g} the Gauss-Seidel and (b} the Jacobi iterative
methods for sclving simultaneous linear algebraic equations.

Convergence criteria can be developed by recalling from Sec. 6.5.1 that sufficient con-
ditions for convergence of two nonlinear equations, u(x, y) and v(x, y), are

du ou

— — ]: 11.7

5 + 3y < (11.7a)
and

i W 1176

dx dy = (11.79)

These criteria also apply to linear equations of the sort we are solving with the Gauss-
Seidel method. For example, in the case of two simultaneous equations, the Gauss-Seidel
algorithm [Eq. (11.5)] can be expressed as

by an
H(x],X2) = — — —2x9 (11.8a)
apoan
and
v(xy,xp) = 2 ﬂxx (11.85)
axp  an

The partial derivatives of these equations can be evaluated with respect to each of the un-
knowns as

du du apn

axy dxz ap
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and
dv  ay dv _
dx;  an axy

which can be substituted into Eq. (11.7) to give

[
24 S0 (11.9a)
apy

and
a
e I | (11.9b)
an

In other words, the absolute values of the slopes of Eq. (11.8) must be less than unity
to ensure convergence. This is displayed graphically in Fig. 11.5. Equation (11.9) can also
be reformulated as

[an| > |az]

and
[azz| > lan]|

That is, the diagonal element must be greater than the off-diagonal element for each row.
The extension of the above to n equations is straightforward and can be expressed as

n
laiil > )" lay;| (11.10)

=1
J#i

FIGURE 11.5

llustration of (a) convergence and (b] divergence of the Gauss-Seidel method. Notice that the
same functions are plotted in both cases (u: T1x) + 13x=286; v: 11x) — 9xa = 99). Thus,
the order in which the equations are implemented [as depicted by the direction of the first arrow
from the origin] dictates whether the computation converges.
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That is, the diagonal coefficient in each of the equations must be larger than the sum of the
absolute values of the other coefficients in the equation. This criterion is sufficient but not
necessary for convergence. That is, although the method may sometimes work it Eq. (11.10)
is not met, convergence is guaranteed if the condition is satisfied. Systems where Eq. (11.10)
holds are called diagonally dominant. Fortunately, many engineering problems of practical
importance fulfill this requirement.

11.2.2 Improvement of Convergence Using Relaxation

Relaxation represents a slight modification of the Gauss-Seidel method and is designed
to enhance convergence. After each new value of x is computed using Eq. (11.5), that
value is modified by a weighted average of the results of the previous and the present
iterations:

XY = Y 4 (1= a)x (11.11)
where A is a weighting factor that is assigned a value between 0 and 2.

Ifx = 1, (1 — ) is equal to 0 and the result is unmodified. However, if X is set at a
value between 0 and 1, the result is a weighted average of the present and the previous
results. This type of modification is called underrelaxation. It is typically employed to
make a nonconvergent system converge or to hasten convergence by dampening out oscil-
lations.

For values of A from 1 to 2, extra weight is placed on the present value. In this in-
stance, there is an implicit assumption that the new value is moving in the correct direction
toward the true solution but at too slow a rate. Thus, the added weight of A is intended to
improve the estimate by pushing it closer to the truth. Hence, this type of modification,
which is called overrelaxation, is designed to accelerate the convergence of an already
convergent system. The approach is also called successive or simultaneous overrelaxation,
or SOR.

The choice of a proper value for A is highly problem-specific and is often determined
empirically. For a single solution of a set of equations it is often unnecessary. However, if
the system under study is to be solved repeatedly, the efficiency introduced by a wise
choice of A can be extremely important. Good examples are the very large systems of par-
tial differential equations that often arise when modeling continuous variations of variables
(recall the distributed system depicted in Fig. PT3.1b). We will return to this topic in Part
Eight.

11.2.3 Algorithm for Gauss-Seidel

An algorithm for the Gauss-Seidel method, with relaxation, is depicted in Fig. 11.6. Note
that this algorithm is not guaranteed to converge if the equations are not input in a diago-
nally dominant form.

The pseudocode has two features that bear mentioning. First, there is an initial set of
nested loops to divide each equation by its diagonal element. This reduces the total number
of operations in the algorithm. Second, notice that the error check is designated by a variable
called sentinel. If any of the equations has an approximate error greater than the stopping
criterion (e,), then the iterations are allowed to continue. The use of the sentinel allows us



@ Chapra-Canale: Numerical | [Il. Linear Algebraic 11. Special Matrices and © The McGraw-Hill
Methods for Engineers, Equations Gauss-Seidel Companies, 2010
Sixth Edition

306 SPECIAL MATRICES AND GAUSS-SEIDEL

SUBROUTINE Gseid (a,b,n,x,imax,es, lambda)

DOFOR 1 = 1,n
dummy = a; i
DOFOR j = 1,n

ay ;= ay jl dummy
END 0O
by = by/dummy

END DO

DOFOR i = 1, n
sum = by
DOFOR j =1, n

IF i#j THEN sum = sum — a; j*x;
END DO
Xy=Sum

END DO

iter=1

0o
sentinel = 1
DOFOR 1 = 1,n

old = x;
sum = by

DOFOR j = 1.n
IF i#j THEN sum = sum — a; j*x;
END DO
X; = lambda*sum +(1.—1lambda)*old
IF sentinel = 1 AND' x; # 0. THEN
ea = ABS((x; — old)/x;)*100.
IF ea > es THEN sentinel = 0
END TF
ENG DO
iter = iter + 1
IF sentinel = 1 OR (iter = imax) EXIT
END DO
END Gseid

FIGURE 11.6

Pseudocode for Gauss-Seidel with relaxation.

to circumvent unnecessary calculations of error estimates once one of the equations exceeds
the criterion.

11.2.4 Problem Contexts for the Gauss-Seidel Method

Aside from circumventing the round-off dilemma, the Gauss-Seidel technique has a number
of other advantages that make it particularly attractive in the context of certain engineering
problems. For example, when the matrix in question is very large and very sparse (that is,
most of the elements are zero), elimination methods waste large amounts of computer mem-
ory by storing zeros.





