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Lecture 18: Minimax Approximation, Optimal Interpolation, Chebyshev Polynomials

3.4.2. Optimal interpolation points.

As an application of the minimax approximation procedure, we consider how best to choose inter-
polation points {xj}

n
j=0 to minimize

‖f − pn‖L∞ ,

where pn ∈ Pn in the interpolant to f at the specified points.

Recall the interpolation error bound developed in Lecture 7: If f ∈ Cn+1[a, b], then

f(x) − pn(x) =
f (n+1)(ξ)

(n + 1)!

n∏

j=0

(x − xj)

for some ξ ∈ [a, b]. Taking absolute values and maximizing over [a, b] yields the bound

‖f − pn‖L∞ = max
ξ∈[a,b]

|f (n+1)(ξ)|

(n + 1)!
max
x∈[a,b]

∣∣∣
n∏

j=0

(x − xj)
∣∣∣.

For Runge’s example, f(x) = 1/(1 + x2) for x ∈ [−5, 5], we observed that ‖f − pn‖L∞ → ∞ as
n → ∞ if the interpolation points {xj} are uniformly spaced over [−5, 5]. However, Marcinkiewicz’s
theorem (Lecture 7) guarantees there is always some scheme for assigning the interpolation points
such that ‖f − pn‖L∞ → 0 as n → ∞. In the case of Runge’s function, we observed that the choice

xj = 5 cos(jπ/n), j = 0, . . . , n

is one such scheme. For general functions f ∈ C[a, b], there is no a priori method for picking
interpolation points to ensure convergence. However, we can get a good estimate of optimal in-
terpolation points by choosing those {xj}

n
j=0 that minimize the error bound. That is, we want to

solve

min
x0,...,xn

max
x∈[a,b]

∣∣∣
n∏

j=0

(x − xj)
∣∣∣. (1)

Notice that

n∏

j=0

(x − xj) = xn+1 − xn
n∑

j=0

xj + xn−1
n∑

j=0

n∑

k=0

xjxk − · · · + (−1)n+1
n∏

j=0

xj

= xn+1 − r(x),

where r ∈ Pn is a degree-n polynomial depending upon the interpolation notes {xj}
n
j=0.

To find the optimal interpolation points according to (1), we should solve

min
r∈Pn

max
x∈[a,b]

|xn+1 − r(x)| = min
r∈Pn

‖xn+1 − r(x)‖L∞ .

Here the goal is to approximate an n + 1-degree polynomial, xn+1, with an n-degree polynomial.
The method of solution is somewhat indirect: we will produce a class of polynomials of the form
xn+1 − r(x) that satisfy the requirements of the oscillation theorem, and thus r(x) must be the
minimax polynomial. We focus on the particular interval [a, b] = [−1, 1].
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Definition. The degree n Chebyshev polynomial is defined for x ∈ [−1, 1] by the formula

Tn(x) = cos(n cos−1 x).

At first glance, this formula may not appear to define a polynomial at all, since it involves trigono-
metric functions.† But computing the first few examples, we find

n = 0: T0(x) = cos(0 cos−1 x) = cos(0) = 1

n = 1: T1(x) = cos(cos−1 x) = x

n = 2: T2(x) = cos(2 cos−1 x) = 2 cos2(cos−1 x) − 1 = 2x2 − 1.

For n = 2, we employed the identity cos 2θ = 2 cos2 θ− 1, substituting θ = cos−1 x. More generally,
we have the identity

cos(n + 1)θ = 2 cos θ cos nθ − cos(n − 1)θ.

This formula implies, for n ≥ 2,

Tn+1(x) = 2xTn(x) − Tn−1(x),

a formula related to the three term recurrence used to construct orthogonal polynomials. (In fact,
Chebyshev polynomials are orthogonal polynomials on [−1, 1] with respect to the inner product
ipf, g =

∫ b
a f(x)g(x)(1 − x2)−1/2.

Chebyshev polynomials have a wealth of interesting properties, of which we mention just three.

Proposition. Let Tn be the degree-n Chebyshev polynomial, Tn = cos(n cos−1 x) for x ∈ [−1, 1].

• |Tn(x)| ≤ 1 for x ∈ [−1, 1];

• The roots of Tn are the ξj = cos (2j−1)π
2n for j = 1, . . . , n;

• For n ≥ 1, Tn attains its maximum on [−1, 1] at the points ηj = cos(jπ/n) for j = 1, . . . , n:

Tn(ηj) = (−1)j .

Proof. These results follow from direct calculations. For x ∈ [−1, 1], Tn(x) = cos(n cos−1(x))
cannot exceed one in magnitude because cosine can’t exceed one in magnitude. To verify the
formula for the roots, compute

Tn(ξj) = cos
(
n cos−1 cos

((2j − 1)π

2n

))
= cos

((2j − 1)π

2

)
= 0,

since cosine is zero at half-integer multiples of π. Similarly,

Tn(ηj) = cos
(
n cos−1 cos

(jπ

n

))
= cos(jπ) = (−1)j .

Below we plot several Chebyshev polynomials.

†Furthermore, it doesn’t apply if |x| > 1. In that case, one can define the Chebyshev polynomials using hyperbolic
trigonometric functions, Tn(x) = cosh(n cosh−1

x). Indeed, using hyperbolic trigonometric identities, one can show
that this expression generates the same polynomials we get from the standard trigonometric identities.
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The punchline. Finally, we are ready to solve the key minimax problem that will reveal optimal in-
terpolation points. Looking at the above plots of Chebyshev polynomials, with their equi-oscillation
properties, maybe you have already guessed it yourself.

We defined the Chebyshev polynomials so that

Tn+1(x) = 2xTn(x) − Tn−1(x)

with T0(x) = 1 and T1(x) = x. Thus Tn+1 has the leading coefficient 2n for n ≥ 0. Define

T̂n+1 = 2−nTn+1

for n ≥ 0, with T̂0 = 1. These normalized Chebyshev polynomials are monic, i.e., the leading term
in T̂n+1 is xn+1, rather than 2nxn+1 as for Tn+1. Thus, we can write

T̂n+1(x) = xn+1 − qn(x)

for some polynomial qn(x) = xn+1 − T̂n+1(x) ∈ Pn.
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For n ≥ 0, polynomials T̂n+1(x) oscillate between ±2−n for x ∈ [−1, 1], with the maximal values
attained at

ηj = cos
( jπ

n + 1

)

for j = 0, . . . , n + 1. In particular,

T̂n+1(ηj) = (ηj)
n+1 − qn(ηj) = (−1)j2−n.

Thus, we have found a polynomial qn ∈ Pn, together with n + 2 distinct points, ηj ∈ [−1, 1] where
the maximum error

max
x∈[−1,1]

|xn+1 − qn(x)| = 2−n

is attained with alternating sign. Thus, by the oscillation theorem, we have found the minimax
approximation to xn+1!

Theorem (Optimal approximation of x
n+1). The optimal approximation to xn+1 from Pn on

the interval x ∈ [−1, 1] is given by

qn(x) = xn+1 − T̂k+1(x) = xn+1 − 2−nT̂k+1(x) ∈ Pn.

Thus, the optimal interpolation points are those n + 1 roots of xn+1 − qn, which are the roots of
the degree-n + 1 Chebyshev polynomial,

ξj = cos
((2j − 1)π

2n + 2

)

for j = 1, . . . , n.

It turns out that similar properties hold if interpolation is performed at the points

ηj = cos
( jπ

n + 1

)
,

which are also called Chebyshev points, for j = 0, . . . , n + 1. (These are essentially the points that
yielded convergence for Runge’s function.)

For generic intervals [a, b], a change of variable demonstrates that the same points, appropriately
scaled, will be optimal.

Because of the central role Chebyshev polynomials play in this field, minimax approximation is
sometimes known as Chebyshev approximation.”
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