We describe some “unrestricted” algorithms which are useful for the computation of elementary and special functions when the precision required is not known in advance. Several general classes of algorithms are identified and illustrated by examples. Applications of such algorithms are mentioned.

1 Introduction

Floating-point computations are usually performed with fixed precision: the machine used may have “single” or “double” precision floating-point hardware, or on small machines fixed-precision floating-point operations may be implemented by software or firmware. Most high-level languages support only a small number of floating-point precisions, and those which support an arbitrary number usually demand that the precision be determinable at compile time.

We say that an algorithm has precision \(n\) if its result is computed with error \(O(2^{-n})\). Usually we are interested in the relative error, but in some cases (e.g. the computation of \(\sin(x)\) for \(x \simeq \pi\)) it is more appropriate to consider the absolute error.

In certain applications it is desirable that the precision of floating-point operations should be able to be varied at runtime. In this paper we consider algorithms which may be used to evaluate elementary and special functions to precision \(n\), where \(n\) may be arbitrarily large. Such algorithms have been termed “unrestricted” by Clenshaw and Olver [13]. Note that algorithms which are “unrestricted” in our sense may have domain restrictions (e.g. an “unrestricted” algorithm for \(\exp(x)\) might be applicable only for \(x \geq 0\)), although such restrictions can often be circumvented by the methods of Section 4, or by combining several algorithms with different domain restrictions.

Unrestricted algorithms depend on the availability of variable-precision floating-point arithmetic. At present this is usually implemented by software, e.g. in the MP package [7], but it could be implemented in firmware or hardware. (Note the historical example of the IBM 1620.)

In the following sections we ignore the possibility of floating-point underflow or overflow. For “ideal” variable-precision arithmetic the exponent range should tend to infinity with the
precision n. For most purposes, though, a whole-word exponent, as used in MP [7], is adequate to avoid overflow problems.

Applications of variable-precision floating-point arithmetic include:

1. generation and testing of accurate tables of constants (e.g. coefficients in minimax polynomial or rational approximations [9, 25]);
2. computation using numerically unstable algorithms [2, 9];
3. interval arithmetic, where the final intervals may be too large if fixed-precision arithmetic is used [20, 28, 37];
4. truly machine-independent floating-point computations;
5. testing of floating-point hardware for correctness and conformity to standards, e.g. those proposed in [14, 29].
6. number-theoretic computations where very high precision may be essential [24, 30].

In this paper we concentrate on unrestricted algorithms rather than their applications. Section 2 summarises some preliminary results. In each of Sections 3 to 9 we illustrate, by one or two simple examples, a useful general method leading to unrestricted algorithms. Some more specialised methods are mentioned in Section 10. The field is vast and we make no attempt to be comprehensive. For simplicity we usually restrict our attention to real variables and omit details of the rounding error analysis. We also omit any discussion of desirable high-level language facilities to support variable precision arithmetic, for which see [10, 19, 32].

Very few of the algorithms given below are new, in fact most of the identities underlying them may be found in [1] or [35]. What may be new is our viewpoint. Often an excellent unrestricted algorithm is unsuitable for fixed-precision computation, and vice versa.

2 Basic arithmetic operations

We assume that variable-precision floating-point numbers are represented by an integer exponent and a fraction with t digits to base $\beta > 1$. We call such numbers “precision n” numbers if $n \simeq (t - 1) \log_2 \beta$. Addition and subtraction of such numbers is straightforward, and requires $O(n)$ operations [22, 23]. We assume at least one guard digit, so the relative error in the computed result is at most $\beta^{1-t} = O(2^{-n})$ (see [36]).

Let $M(n)$ be the number of operations required for multiplication of precision n numbers. By the Schönhage-Strassen algorithm [22, 33]

$$M(n) = O(n \log n \log \log n).$$

For the moderate values of n which usually arise in applications, an efficient implementation of the classical $O(n^2)$ algorithm may be faster than the Schönhage-Strassen algorithm or other asymptotically fast algorithms.

Let $D(n)$ be the number of operations required for division of precision n numbers. Under plausible assumptions it may be shown that $D(n) = O(M(n))$ (see, for example, [5]). In practice
the “schoolboy” algorithm, which requires $O(n^2)$ operations, may be the fastest unless n is rather large.

It is important to distinguish between multiplication of two precision n numbers and multiplication or division of a precision n number by a small (single-precision) integer. The latter require only $O(n)$ operations if implemented in the obvious way.

3 Power series

If $f(x)$ is analytic in a neighbourhood of some point c, an obvious method to consider for the evaluation of $f(x)$ is summation of the Taylor series

$$f(x) = \sum_{j=0}^{k-1} (x - c)^j f^{(j)}(c)/j! + R_k(x, c).$$

As a simple but instructive example we consider the evaluation of $\exp(x)$ for $|x| \leq 1$, using

$$\exp(x) = \sum_{j=0}^{k-1} x^j/j! + R_k(x),$$

where $|R_k(x)| \leq \epsilon/k!$

Using Stirling’s approximation for $k!$, we see that $k \geq K(n) \sim n/\log_2 n$ is sufficient to ensure that $|R_k(x)| = O(2^{-n})$. Thus the time required is $O(nM(n)/\ln n)$.

In practice it is convenient to sum the series in the forward direction ($j = 0, 1, \ldots, k - 1$). The terms $T_j = x/j!$ and partial sums

$$S_j = \sum_{i=0}^{j} T_i$$

may be generated by the recurrence $T_j = x \times T_{j-1}/j$, $S_j = S_{j-1} + T_j$, and the summation terminated when $|T_k| < 2^{-n}$. Thus, it is not necessary to estimate k in advance, as it would be if the series were summed by Horner’s rule in the backward direction ($j = k - 1, k - 2, \ldots, 0$).

We now consider the effect of rounding errors, under the assumption that floating-point operations satisfy

$$fl(x \text{ op } y) = (x \text{ op } y)(1 + \delta),$$

where $|\delta| \leq \varepsilon$ and “op” = “+”, “−”, “×” or “/”. Here $\varepsilon \leq \beta^{-t}$ is the “machine-precision” [36]. Let \hat{T}_j be the computed value of T_j, etc. Thus

$$|\hat{T}_j - T_j| / |T_j| \leq 2j\varepsilon + O(\varepsilon^2)$$

and

$$|\hat{S}_k - S_k| \leq k\varepsilon + \sum_{j=1}^{k} 2j\varepsilon|T_j| + O(\varepsilon^2) \leq (k + 2)\varepsilon + O(\varepsilon^2) = O(n\varepsilon).$$

Thus, to get $|\hat{S}_k - S_k| = O(2^{-n})$ it is sufficient that $\varepsilon = O(2^{-n}/n)$, i.e. we need to work with about $\log_3 n$ guard digits. This is not a significant overhead if (as we assume) the number of
digits may vary dynamically. The slightly better error bound obtainable for backward summation is thus of no importance.

In practice it is inefficient to keep ε fixed. We can profitably reduce the working precision when computing T_k from T_{k-1} if $|T_{k-1}| \ll 1$, without significantly increasing the error bound.

It is instructive to consider the effect of relaxing our restriction that $|x| \leq 1$. First suppose that x is large and positive. Since $|T_j| > |T_{j-1}|$ when $j < |x|$, it is clear that the number of terms required in the sum (3) is at least of order $|x|$. Thus, the method is slow for large $|x|$ (see Section 4 for faster methods in this case).

If $|x|$ is large and x is negative, the situation is even worse. From Stirling’s approximation we have

$$\max_{j \geq 0} |T_j| \simeq \exp \frac{|x|}{\sqrt{2\pi |x|}} ,$$

but the result is $\exp(-|x|)$, so about $2|x|/\ln \beta$ guard digits are required to compensate for Lehmer’s “catastrophic cancellation” [15]. Since $\exp(x) = 1/\exp(-x)$, this problem may easily be avoided, but the corresponding problem is not always so easily avoided for other analytic functions.

In the following sections we generally ignore the effect of rounding errors, but the results obtained above are typical. For an example of an extremely detailed error analysis of an unrestricted algorithm, see [13].

To conclude this section we give a less trivial example where power series expansions are useful. To compute the error function

$$\text{erf}(x) = 2\pi^{-1/2} \int_0^x e^{-u^2} du ,$$

we may use the series

$$\text{erf}(x) = 2\pi^{-1/2} \sum_{j=0}^{\infty} \frac{(-1)^j x^{2j+1}}{j!(2j + 1)} ,$$

or

$$\text{erf}(x) = 2\pi^{-1/2} \exp(-x^2) \sum_{j=0}^{\infty} \frac{2^j x^{2j+1}}{1 \cdot 3 \cdot 5 \cdots (2j + 1)} .$$

The series (9) is preferable to (8) for moderate $|x|$ because it involves no cancellation. For large $|x|$ neither series is satisfactory, because $\Omega(x^2)$ terms are required, and it is preferable to use the asymptotic expansion or continued fraction for $\text{erfc}(x) = 1 - \text{erf}(x)$: see Sections 5 and 6.

4 Halving identities

In Section 3 we saw that the power series is not suitable for evaluation of $\exp(x)$ if $|x|$ is large. To reduce the size of the argument we may use the identity

$$\exp(x) = [\exp(x/2)]^2$$

as often as necessary. When applied k times, (10) gives

$$\exp(x) = [\exp(2^{-k}x)]^{2^k} .$$
If \(k = \lceil cn^{1/2} \rceil + \log_2 |x| \) for some positive constant \(c \), and (11) is used in conjunction with the power series algorithm of Section 3, the time required to evaluate \(\exp(x) \) to precision \(n \) for large \(|x| \) is

\[
O\left[(n^{1/2} + \ln |x|)M(n) \right],
\]

better than the \(O\left[(n/ \ln n + |x|)M(n) \right] \) result of Section 3 (the case \(k = 0 \)).

Similar “halving” (or “doubling”) identities, derived by replacing \(x \) by \(ix \) in (10), may be used to evaluate trigonometric and inverse trigonometric functions [5, 7, 13, 32]. Other identities are useful in special applications: see Section 10 for some examples.

5 Asymptotic expansions

Rarely does a single method suffice to evaluate a special function over its whole domain. For example, the exponential integral

\[
E_1(x) = \int_x^\infty \frac{\exp(-u)}{u} \, du
\]

is defined for all \(x \neq 0 \). (The Cauchy principal value is taken in (12) if \(x < 0 \).) However, the power series

\[
E_1(x) + \gamma + \ln |x| = \sum_{j=1}^\infty \frac{x^j(-1)^{j-1}}{j!j}
\]

is unsatisfactory as a means of evaluating \(E_1(x) \) for large \(|x| \), for the reasons discussed in Section 3 in connection with the power series for \(\exp(x) \). For sufficiently large \(|x| \) it is preferable to use the asymptotic expansion \[12\]

\[
E_1(x) = \exp(-x) \sum_{j=1}^k \frac{(j-1)!(-1)^{j-1}}{x^j} + R_k(x),
\]

where

\[
R_k(x) = k!(-1)^k \int_x^\infty \frac{\exp(-u)}{u^{k+1}} \, du.
\]

For large positive \(x \), the relative error attainable by using (14) with \(k \approx x \) is \(O(x^{1/2} \exp(-x)) \), because

\[
|R_k(k)| \leq k!(k+1)^{-1} \exp(-k) = O(k^{-1/2} \exp(-2k)) .
\]

Thus, the asymptotic series may be used to evaluate \(E_1(x) \) to precision \(n \) when \(x > n \ln 2 + \mathcal{O}(\ln n) \). (Similarly if \(-x > n \ln 2 + \mathcal{O}(\ln n) \), although the estimation of \(|R_k(-k)| \) is more difficult than that of \(|R_k(k)| \).

There are many other examples where asymptotic expansions are useful, e.g. for \(\text{erfc}(x) \) (mentioned in Section 3), for Bessel functions \[11, 35\], etc. Asymptotic expansions often arise when the convergence of series is accelerated by the Euler-Maclaurin sum formula \[1\]. For example, the Riemann zeta function \(\zeta(s) \) is defined for \(R(s) > 1 \) by

\[
\zeta(s) = \sum_{j=1}^\infty j^{-s},
\]

\[17\]
and by analytic continuation for other \(s \neq 1 \). (Here we allow complex \(s \).) \(\zeta(s) \) may be evaluated to any desired precision if \(m \) and \(p \) are chosen large enough in the Euler-Maclaurin formula [8]

\[
\zeta(s) = \sum_{j=1}^{p-1} j^{-s} + \frac{1}{2} p^{-s} + \frac{p^{1-s}}{s-1} + \sum_{k=1}^{m} T_{k,p}(s) + E_{m,p}(s),
\]

where

\[
T_{k,p}(s) = \frac{B_{2k}}{(2k)!} p^{1-s-2k} \prod_{j=0}^{2k-2} (s+j),
\]

(19)

\[
|E_{m,p}(s)| < |T_{m+1,p}(s) (s+2m+1)/(\sigma+2m+1)|, \quad m \geq 0, p \geq 1, \quad \sigma = R(s) > -(2m+1), \quad \text{and the } B_{2k} \text{ are Bernoulli numbers.}
\]

In arbitrary-precision computations we must be able to compute as many terms of an asymptotic expansion as are required to give the desired accuracy. It is easy to see that \(m \) in (18) can not be bounded as the precision \(n \rightarrow \infty \), else \(p \) would not have to increase as an exponential function of \(n \). To evaluate \(\zeta(s) \) from (18) to precision \(n \) in time polynomial in \(n \), both \(m \) and \(p \) must tend to infinity with \(n \). Thus, the Bernoulli numbers \(B_2, \ldots, B_{2m} \) can not be stored in a table of fixed size, but must be computed when needed (see Sections 7 and 9). For this reason we can not use asymptotic expansions when the general form of the coefficients is unknown (such as Stirling’s formula for \(\Gamma(x) \)) in arbitrary-precision calculations. Often there is a related expansion with known coefficients, e.g. the asymptotic expansion for \(\ln \Gamma(x) \) has coefficients related to the Bernoulli numbers, like (19).

6 Continued fractions

Sometimes continued fractions are preferable to power series or asymptotic expansions. For example, Euler’s continued fraction [34]

\[
\exp(x)\ E_1(x) = 1/x + 1/1 + 1/x + 2/1 + 2/x + 3/1 + \cdots
\]

(21)

converges for all real \(x > 0 \), and is better for computation of \(E_1(x) \) than the power series (13) in the region where the power series suffers from catastrophic cancellation but the asymptotic expansion (14) is not sufficiently accurate. Convergence of (21) is slow if \(x \) is small, so (21) is preferred for precision \(n \) evaluation of \(E_1(x) \) only when \(x \in (c_1n, c_2n) \), \(c_1 \simeq 0.1, c_2 \simeq \ln 2 \).

It is well known that continued fractions may be evaluated by either forward or backward recurrence relations. Consider the finite continued fraction

\[
y = a_1/b_1 + a_2/b_2 + \cdots + a_k/b_k.
\]

(22)

The backward recurrence is \(R_k = 1, R_{k-1} = b_k \),

\[
R_j = b_{j+1} R_{j+1} + a_{j+2} R_{j+2} \quad \text{ \((j = k-2, \ldots, 0)\)}\]

(23)

and \(y = a_1 R_1 / R_0 \). The forward recurrence is \(P_0 = 0, P_1 = a_1, Q_0 = 1, Q_1 = b_1 \),

\[
\begin{aligned}
P_j &= b_j P_{j-1} + a_j P_{j-2} \quad \text{ \((j = 2, \ldots, k)\)} \\
Q_j &= b_j Q_{j-1} + a_j Q_{j-2}
\end{aligned}
\]

(24)

and \(y = P_k/Q_k \).
The advantage of evaluating an infinite continued fraction such as (21) via the forward recurrence is that k need not be chosen in advance; we can stop when $|D_k|$ is sufficiently small, where

$$D_k = \frac{P_k}{Q_k} - \frac{P_{k-1}}{Q_{k-1}}. \tag{25}$$

The disadvantage of the forward recurrence is that twice as many arithmetic operations are required as for the backward recurrence with the same value of k. There is a simple solution to this dilemma if we are working with variable-precision floating-point arithmetic which is much more expensive than single-precision floating-point. We use the forward recurrence with single-precision arithmetic (scaled to avoid overflow/underflow) to estimate k, then use the backward recurrence with variable-precision arithmetic. One trick is needed: to evaluate D_k using scaled single-precision we use the recurrence

$$D_1 = a_1/b_1,$$

$$D_j = a_jQ_{j-2}D_{j-1}/Q_j \quad (j = 2, 3, \ldots) \tag{26}$$

which avoids the cancellation inherent in (25).

In recent versions of the MP package [7] we have used the continued fraction (21) in the manner just described, and similar continued fractions could well be used for the computation of other special functions. Since power series and asymptotic series are generally easier to analyse and program than continued fractions, we have avoided continued fractions except where they are clearly superior to the other methods.

7 Recurrence relations

The evaluation of special functions by continued fractions is a special case of their evaluation by recurrence relations. For example, the Bessel functions $J_\nu(x)$ satisfy the recurrence relation

$$J_{\nu-1}(x) + J_{\nu+1}(x) = \frac{2\nu}{x} J_\nu(x) \tag{27}$$

which may be evaluated backwards (compare (23)), using a normalisation condition such as

$$J_0(x) + 2 \sum_{\nu=1}^\infty J_{2\nu}(x) = 1. \tag{28}$$

This seems to be the most effective method in the region where Hankel’s asymptotic expansion is insufficiently accurate but the power series

$$J_\nu(x) = \left(\frac{x}{2}\right)^\nu \sum_{j=0}^\infty \frac{(-x^2/4)^j}{j! \Gamma(\nu + j + 1)} \tag{29}$$

suffers from catastrophic cancellation. For details see [17].

In Section 5 the constants $C_k = B_{2k}/(2k)!$ were required, where the B_{2k} are Bernoulli numbers. The C_k are defined by the generating function

$$\sum_{k=0}^\infty C_k x^{2k} = \frac{x}{e^x - 1} + \frac{x}{2}. \tag{30}$$
Multiplying both sides by $e^x - 1$ and equating coefficients gives the recurrence relation

$$\frac{C_k}{1!} + \frac{C_{k-1}}{3!} + \cdots + \frac{C_1}{(2k-1)!} = \frac{k - \frac{1}{2}}{(2k + 1)!}, \quad (31)$$

which has often been used to evaluate Bernoulli numbers [21].

Unfortunately, forward evaluation of the recurrence (31) is numerically unstable: using precision n the relative error in the computed C_k is of order $4^k 2^{-n}$. We shall not prove this, but shall indicate why such behaviour is to be expected. Consider the “homogeneous” recurrence

$$\hat{C}_k + \frac{\hat{C}_{k-1}}{3!} + \cdots + \frac{\hat{C}_1}{(2k-1)!} = 0 \quad (k \geq 2) \quad (32)$$

with $\hat{C}_1 = 1$, and let

$$\hat{G}(x) = \sum_{k=1}^{\infty} \hat{C}_k x^{2k} \quad (33)$$

be the generating function for the \hat{C}_k. It is easy to show that

$$\hat{G}(x) = \frac{x^3}{\sinh x}. \quad (34)$$

Thus $\hat{G}(x)$ has poles at $\pm i \pi$, and

$$|\hat{C}_k| \geq K \pi^{-2k} \quad (35)$$

for some $K > 0$. This suggests that an error of order 2^{-n} in an early value of C_j propagates to give an (absolute) error of order $2^{-n} \pi^{-2k}$ in C_k for large k. Since $|C_k| \sim (2\pi)^{-2k}$, this absolute error corresponds to a relative error of order $2^{k-2n} = 4^k 2^{-n}$ in C_i.

Despite its numerical instability, use of (31) may give the C_k to acceptable accuracy if they are only needed to generate coefficients in an Euler-Maclaurin expansion whose successive terms diminish by at least a factor of 4. If the C_k or B_{2k} are required to precision n, either (31) must be used with sufficient guard digits, or a more stable recurrence must be used. If we multiply both sides of (30) by $\sinh(x/2)/x$ and equate coefficients, we get the recurrence

$$C_k + \frac{C_{k-1}}{3!} 4 + \cdots + \frac{C_1}{(2k-1)!} 4^{k-1} = \frac{2k}{(2k + 1)!} 4^k \quad (36)$$

If (36) is used to evaluate C_k, using precision n arithmetic, the error is only $O(k^2 2^{-n})$. Thus, this method is currently used in the MP package instead of a method based on (31).

8 Newton’s method

Newton’s method and related zero-finding methods may be used to evaluate a function if we have an algorithm for evaluation of the inverse function. For example, applying Newton’s method to $f(x) = y - x^{-m}$ (where y is regarded as constant) gives the iteration

$$x_{j+1} = x_j + x_j (1 - x_j^m y)/m, \quad (37)$$

which converges (from a sufficiently good initial approximation) to $y^{-1/m}$. Note that (37) does not involve divisions except by the small integer m.

8
Similarly, applying Newton’s method to \(f(x) = \exp(x) - y \) gives the iteration
\[
x_{j+1} = x_j + y \exp(-x_j) - 1.
\] (38)
which converges to \(\ln y \) if \(x_0 \) is a sufficiently good initial approximation.

Newton’s method generally has second order convergence, so we may start with low precision and approximately double it at each iteration. Thus, the work required is of the same order as the work for the final iteration. Applied to (37) with \(m = 1 \) and 2, this argument shows that reciprocals and square roots can be found to precision \(n \) in \(O(M(n)) \) operations. For further details, and a comparison of the efficiencies of various root-finding methods for variable-precision computations, see [4, 5].

9 Contour integration

In this section we assume that facilities for variable-precision complex arithmetic are available. Let \(f(z) \) be holomorphic in the disc \(|z| < R, R > 1 \), and let the power series for \(f \) be
\[
f(z) = \sum_{j=0}^{\infty} a_j z^j
\] (39)
From Cauchy’s theorem [18] we have
\[
a_j = \frac{1}{2\pi i} \int_C \frac{f(z)}{z^{j+1}} \, dz,
\] (40)
where \(C \) is the unit circle. The contour integral in (40) may be approximated numerically by sums
\[
S_{j,k} = \frac{1}{k} \sum_{m=0}^{k-1} f(e^{2\pi i m/k}) e^{-2\pi i j m/k}.
\] (41)
From Cauchy’s theorem,
\[
S_{j,k} - a_j = \frac{1}{2\pi i} \int_C \frac{f(z)}{(z^{k-1})z^{j+1}} \, dz
\]
\[
= a_{j+k} + a_{j+2k} + \cdots,
\] (42)
so \(|S_{j,k} - a_j| = O((R - \delta)^{-j+k}) \) as \(k \to \infty \), for any \(\delta > 0 \).

For example, let
\[
f(z) = \frac{z}{2} + \frac{1}{z}
\] (43)
as in Section 7, so \(a_{2j} = B_{2j}/(2j)! \) and \(R = 2\pi \). Then
\[
S_{j,k} - B_{2j}/(2j)! = \frac{B_{2j+k}}{(2j+k)!} + \frac{B_{2j+2k}}{(2j+2k)!} + \cdots,
\] (44)
so we can evaluate \(B_{2j} \) with relative error \(O((2\pi)^{-k}) \) by evaluating \(f(z) \) at \(k \) points on the unit circle. (By symmetry and conjugacy only \(k/4 + 1 \) evaluations are required if \(k \) is a multiple of four.) If \(\exp(-2\pi i j m/k) \) is computed efficiently from \(\exp(-2\pi i/k) \) in the obvious way, the time required to evaluate \(B_2, \ldots, B_{2j} \) to precision \(n \) is \(O(jnM(n)) \), and the space required is \(O(n) \). The recurrence relation method of Section 7 requires time only \(O(jn^2) \), but space \(O(jn) \). Thus, the method of contour integration is recommended if space is more important than time.

For further discussion of the contour integration method, see [26].
In this section we mention two of a large number of “special” methods which are useful but less generally applicable than the methods of Sections 3 to 9. The first such method is the conversion of a power series which suffers from catastrophic cancellation to one which is better behaved numerically. One example, (9), has already been given. Another example occurs with

\[E(x) = \int_0^x \frac{(1 - e^{-u})}{u} \, du = \sum_{j=1}^{\infty} \frac{x^j(-1)^{j-1}}{j! \, j} \]

(a series encountered in Section 5). Multiplying by \(\exp(x) \) and using some well known identities, we find

\[\exp(x)E(x) = \sum_{j=1}^{\infty} H_j x^j/j! , \]

where

\[H_j = \sum_{m=1}^{j} \frac{1}{m} . \]

If \(x \) is large and positive, the series in (46) is much better behaved numerically than the series in (45). For an application where \(E(x) \) was required to high precision with \(x \) a positive integer, see [11]. At first sight it appears that, in this application, the summation to precision \(n \) of \(k \) terms in the series (45) requires \(O(kn) \) operations, while (46) requires \(\Omega(kM(n)) \) operations. However, by a “summation by parts” trick described in [11], this can be reduced to \(O(kn) \) operations.

Our second “special” method is the evaluation of \(\pi \) and elementary functions by the arithmetic-geometric mean (AGM) iteration. It is well known that the AGM can be used to compute elliptic integrals, but perhaps less well known that it can also be used to compute \(\pi \) and elementary functions, and gives the fastest known methods when the precision \(n \) is very large [4, 6].

The AGM of two positive numbers \(a_0 \) and \(b_0 \) is

\[a_{j+1} = \frac{a_j + b_j}{2} \]

and

\[b_{j+1} = \sqrt{a_j b_j} . \]

There is no essential loss of generality in assuming that \(a_0 = 1 \) and \(b_0 = \cos \phi \). Gauss [16] showed that \(2a = \pi/K(\phi) \), where

\[K(\phi) = \int_0^{\pi/2} (1 - \sin^2 \phi \sin^2 \theta)^{-1/2} \, d\theta \]

is the complete elliptic integral of the first kind. A simple proof is given in [27].

The AGM iteration converges quadratically: if \(\varepsilon_j = 1 - b_j/a_j \) then

\[\varepsilon_{j+1} = 1 - 2(1 - \varepsilon_j)^{1/2}/(2 - \varepsilon_j) = \varepsilon_j^2/8 + O(\varepsilon_j^3) . \]

Using the AGM and an identity of Lagrange, we get a family of quadratically convergent algorithms for the computation of \(\pi \). The simplest of these is:
\[a := 1 ; \\
b := 1/\sqrt{2} ; \\
t := 1/4 ; \\
j := 1 ; \\
\text{repeat} \\
y := a ; \\
a := (a + b)/2 ; \\
b := \sqrt{b \times y} ; \\
t := t - j \times (a - y)^2 ; \\
j := 2 \times j \\
\text{until} \quad (a - b) < \text{tolerance} ; \\
\text{return} \quad a^2/t. \]

After \(k \) iterations the error \(|a^2/t - \pi|\) is about \(8\pi \exp(-2^k\pi) \), e.g. \(k = 5 \) gives error less than \(10^{-42} \). For further details see [6, 31].

In [3, 4, 6] it is shown how the AGM may be used to compute the elementary functions \(\exp(x) \), \(\ln(x) \), \(\arctan(x) \), \(\sin(x) \) etc. to precision \(n \) in \(O(M(n) \log n) \) operations. The factor “log \(n \)” arises because \(O(\log n) \) iterations of the AGM are required. It is important to note that the AGM iteration is not self-correcting, so the trick of starting with low precision and doubling it on each iteration (as used in Section 8) is not applicable.

11 Summary

Many “classical” methods may be adapted for use in variable-precision computations; others are not readily adaptable. Since the performance criteria are different in variable-precision applications, the best method may be one which is not well-suited to fixed-precision computations. For example, it might be numerically unstable, and thus require the working precision to be increased. The examples given in Sections 3 to 10 above are intended to illustrate the main ideas of variable-precision algorithms.

12 Acknowledgement

Christian Reinsch kindly suggested that the use of (36) would be faster than the method described in Section 6.11 of [7].
References

