\qquad
\qquad Time Allowed: \qquad
\qquad 5

INSTRUCTIONS:

i. Answer ALL of the following questions.
ii. The full mark for this examination is 100 .
iii. Calculators are allowed, but they must not be pre-programmed or have stored text.

1. (15 marks)

Answer each of the following short questions (justification not required):
a. What is the order of the truncation error of the trapezoidal rule as function of n, the number of trapezoids?

Answer: $\mathrm{O}\left(n^{-2}\right)$
b. Scaled partial pivoting is used in solving linear systems of equations to reduce what kind of error?

Answer: round-off error
c. What is the order of time required to fit a spline curve to n points?

Answer: $\mathrm{O}(n)$
2. (20 marks)

Consider the function $\sin (x)$.
a. Compute the quadratic Taylor polynomial approximation to $\sin (x)$ expanded about the point $x=\pi / 4$.
(5 marks)

Answer:

$$
\begin{aligned}
P_{T}(x) & =\sin (\pi / 4)+\cos (\pi / 4)(x-\pi / 4)-\frac{1}{2} \sin (\pi / 4)(x-\pi / 4)^{2} \\
& =\frac{\sqrt{2}}{2}\left[1+(x-\pi / 4)-\frac{1}{2}(x-\pi / 4)^{2}\right]
\end{aligned}
$$

and
\qquad 00001 \qquad
\qquad 5
b. Give an upper bound on the error of this Taylor polynomial for $x \in[0, \pi / 2]$.

Answer:

$$
\sin (x)=P_{T}(x)+E_{T}(x),
$$

where

$$
E_{T}(x)=-\frac{\sin (\xi)}{6}(x-\pi / 4)^{3} .
$$

Since $|\sin (x)| \leq 1$ and $\left|(x-\pi / 4)^{3}\right| \leq(\pi / 4)^{3}$ for $x \in[0, \pi / 2]$, it follows that

$$
\left|E_{T}(x)\right|=\frac{\pi^{3}}{6 \times 64}=0.08075
$$

c. Compute the polynomial that interpolates $\sin (x)$ at the points $x=0, \pi / 4, \pi / 2$. (5 marks)

Answer:

$$
P_{I}(x)=\left(\frac{\sqrt{2}}{2}\right) \frac{x(x-\pi / 2)}{-\pi^{2} / 16}+\frac{x(x-\pi / 4)}{\pi^{2} / 8}
$$

d. Give an upper bound on the error of this interpolating polynomial for $x \in[0, \pi / 2]$. Which of the two polynomials have smaller maximum error on $x \in[0, \pi / 2]$?

Answer:

$$
\sin (x)=P_{I}(x)+E_{I}(x),
$$

where

$$
E_{I}(x)=-\frac{\sin (\zeta)}{6} x(x-\pi / 4)(x-\pi / 2) .
$$

Again, note that $|\sin (x)| \leq 1$. The function

$$
x(x-\pi / 4)(x-\pi / 2)=(x-\pi / 4)^{3}-(\pi / 4)^{2}(x-\pi / 4)
$$

has local optima at $x-\pi / 4= \pm \pi /(4 \sqrt{3})$. So

$$
|x(x-\pi / 4)(x-\pi / 2)| \leq[\pi /(4 \sqrt{3})]^{3}|1-3|=\pi^{3} /(96 \sqrt{3})
$$

and it follows that

$$
\left|E_{I}(x)\right|=\frac{\pi^{3}}{6 \times 96 \sqrt{3}}=0.0310789
$$

The error of the interpolating polynomial is smaller than that of the Taylor polynomial.
3. (20 marks)

Suppose that one estimates a quantity I by its numerical approximation, $Q(n)$ for $n=10,30,90, \ldots$. It is known that $|I-Q(n)|=\mathrm{O}\left(n^{-4}\right)$ as $n \rightarrow \infty$.
\qquad 00001 \qquad Time Allowed: \qquad 2 Hour(s)

Subject Title: Numerical Methods I WITH ANSWERS

\qquad Total Number of Pages: \qquad 5
a. Derive a formula to estimate the error $|I-Q(90)|$, based on knowing $Q(30)$ and $Q(90)$. (10 marks)

Answer: Let $E(n)=I-Q(n)$. By the assumption $E(n) \approx K n^{-4}$. It follows that

$$
Q(n)-Q(n / 3)=E(n / 3)-E(n) \approx K(n / 3)^{-4}-K n^{-4}=\left(3^{4}-1\right) K n^{-4} \approx 80 E(n)
$$

$$
\text { So } E(n) \approx[Q(n)-Q(n / 3)] / 80=\hat{E}(n), \text { i.e. } E(90) \approx[Q(90)-Q(30)] / 80=\hat{E}(90)
$$

b. Derive a formula to extrapolate the $Q(n)$ to get, $\tilde{Q}(n)$, a better estimate of I. (5 marks)

Answer: Let $\tilde{Q}(n)=Q(n)+\hat{E}(n)$.
c. Suppose that $Q(30)=20.052$ and $Q(90)=23.613$. Use your results in the previous two sections to estimate the error of $Q(90)$ and find an extrapolated approximation. (5 marks)

Answer:

$$
\begin{aligned}
\hat{E}(90)=[Q(90)-Q(30)] / 80 & =[23.613-20.052] / 80=0.045 \\
\tilde{Q}(90)=Q(90)+\hat{E}(90) & =23.613+0.045=23.658
\end{aligned}
$$

4. (16 marks)

Given a nonsingular $n \times n$ matrix \mathbf{A}, and $n \times 1$ vectors $\mathbf{x}, \hat{\mathbf{x}}, \mathbf{b}=\mathbf{A x}$, and $\hat{\mathbf{b}}=\mathbf{A} \hat{\mathbf{x}}$, recall that

$$
\frac{\|\mathbf{x}-\hat{\mathbf{x}}\|}{\|\mathbf{x}\|} \times \frac{\|\mathbf{b}\|}{\|\mathbf{b}-\hat{\mathbf{b}}\|} \leq \operatorname{cond}(\mathbf{A})
$$

a. Suppose that \mathbf{b} is an eigenvector of \mathbf{A} with eigenvalue λ, and $\mathbf{b}-\hat{\mathbf{b}}$ is an eigenvector of \mathbf{A} with eigenvalue ω. Find a better bound for

$$
\frac{\|\mathbf{x}-\hat{\mathbf{x}}\|}{\|\mathbf{x}\|} \times \frac{\|\mathbf{b}\|}{\|\mathbf{b}-\hat{\mathbf{b}}\|}
$$

in this special case.

Answer:

$$
\begin{aligned}
\frac{\|\mathbf{x}-\hat{\mathbf{x}}\|}{\|\mathbf{x}\|} \times \frac{\|\mathbf{b}\|}{\|\mathbf{b}-\hat{\mathbf{b}}\|}= & \frac{\|\mathbf{x}-\hat{\mathbf{x}}\|}{\|\mathbf{b}-\hat{\mathbf{b}}\|} \times \frac{\|\mathbf{b}\|}{\|\mathbf{x}\|}=\frac{\left\|\mathbf{A}^{-1}(\mathbf{b}-\hat{\mathbf{b}})\right\|}{\|\mathbf{b}-\hat{\mathbf{b}}\|} \times \frac{\|\mathbf{b}\|}{\left\|\mathbf{A}^{-1} \mathbf{b}\right\|} \\
& =\frac{\left\|\omega^{-1}(\mathbf{b}-\hat{\mathbf{b}})\right\|}{\|\mathbf{b}-\hat{\mathbf{b}}\|} \times \frac{\|\mathbf{b}\|}{\left\|\lambda^{-1} \mathbf{b}\right\|}=\frac{|\omega|^{-1}\|(\mathbf{b}-\hat{\mathbf{b}})\|}{\|\mathbf{b}-\hat{\mathbf{b}}\|} \times \frac{\|\mathbf{b}\|}{|\lambda|^{-1}\|\mathbf{b}\|}=\frac{|\lambda|}{|\omega|}
\end{aligned}
$$

\qquad
\qquad Time Allowed: \qquad 2 Hour(s)

Subject Title: Numerical Methods I WITH ANSWERS \qquad Total Number of Pages: \qquad 5
b. If the eigenvalues of \mathbf{A} are $100,-50,3 \pm 5 \sqrt{-1}$, then find a lower bound on cond (\mathbf{A}) using the result of part a. and under the assumptions of part a.

Answer: Since under the assumptions of part a.,

$$
\frac{|\lambda|}{|\omega|}=\frac{\|\mathbf{x}-\hat{\mathbf{x}}\|}{\|\mathbf{x}\|} \times \frac{\|\mathbf{b}\|}{\|\mathbf{b}-\hat{\mathbf{b}}\|} \leq \operatorname{cond}(\mathbf{A})
$$

it follows that

$$
\operatorname{cond}(\mathbf{A}) \geq \frac{\text { largest absolute eigenvalue of } \mathbf{A}}{\text { smallest absolute eigenvalue of } \mathbf{A}}=\frac{100}{|3+5 \sqrt{-1}|}=\frac{100}{\sqrt{34}}
$$

5. (14 marks)

Two iterative methods for solving linear systems of algebraic equations, $\mathbf{A x}=\mathbf{b}$, are Jacobi and Gauss-Seidel. For each of these methods give necessary and sufficient conditions on \mathbf{A} so that the method will give the exact answer in one iteration, regardless of \mathbf{b} and the starting value $\mathbf{x}^{(0)}$.

Answer: Write $\mathbf{A}=\mathbf{L}+\mathbf{D}+\mathbf{U}$, where \mathbf{L} is a strictly lower triangular matrix (zero along the diagonal), \mathbf{D} is a diagonal matrix (zero along the diagonal), and \mathbf{U} is a strictly upper triangular matrix (zero along the diagonal). Then one may write

$$
\begin{gathered}
\text { Jacobi } \quad \mathbf{D} \mathbf{x}^{(k+1)}=\mathbf{b}-(\mathbf{L}+\mathbf{U}) \mathbf{x}^{(k)} \\
\text { Gauss-Seidel } \quad(\mathbf{D}+\mathbf{L}) \mathbf{x}^{(k+1)}=\mathbf{b}-\mathbf{U} \mathbf{x}^{(k)}
\end{gathered}
$$

The Jacobi method will give the exact answer in one iteration for all initial guesses iff $\mathbf{L}+\mathbf{U}=\mathbf{0}$, i.e., A is a nonsingular diagonal matrix. The Gauss-Seidel method will give the exact answer in one iteration for all initial guesses iff $\mathbf{U}=\mathbf{0}$, i.e., \mathbf{A} is a nonsingular lower triangular matrix.
6. (15 marks)

Consider the tri-diagonal matrix

$$
\mathbf{A}=\left(\begin{array}{lll}
4 & 2 & 0 \\
2 & 2 & 1 \\
0 & 1 & 1
\end{array}\right)
$$

To find eigenvalues one uses a QR algorithm involving successive iterations of Givens rotations. Apply one complete iteration of Givens rotations to this matrix.

Answer: First, we form the matrix

$$
\mathbf{G}_{1}=\frac{1}{\sqrt{4^{2}+2^{2}}}\left(\begin{array}{ccc}
4 & 2 & 0 \\
-2 & 4 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
0.8944 & 0.4472 & 0 \\
-0.4472 & 0.8944 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

\qquad 00001 Time Allowed: \qquad 2 Hour (s)

Subject Title: Numerical Methods I WITH ANSWERS \qquad Total Number of Pages: \qquad 5

Then we multiply,

$$
\mathbf{G}_{1} \mathbf{A}=\left(\begin{array}{ccc}
4.4721 & 2.6833 & 0 \\
0 & 0.8944 & 1 \\
0 & 1 & 1
\end{array}\right)
$$

Next, we form the matrix

$$
\mathbf{G}_{2}=\frac{1}{\sqrt{0.8944^{2}+1^{2}}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0.8944 & 1 \\
0 & -1 & 0.8944
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0.6667 & 0.7454 \\
0 & -0.7454 & 0.6667
\end{array}\right)
$$

Then we multiply,

$$
\mathbf{G}_{2} \mathbf{G}_{1} \mathbf{A}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0.6667 & 0.7454 \\
0 & -0.7454 & 0.6667
\end{array}\right)\left(\begin{array}{ccc}
4.4721 & 2.6833 & 0 \\
0 & 0.8944 & 1 \\
0 & 1 & 1
\end{array}\right)=\left(\begin{array}{ccc}
4.4721 & 2.6833 & 0.4472 \\
0 & 1.3416 & 1.3416 \\
0 & 0 & 0
\end{array}\right)
$$

Finally, we multiply on the right by the Given's rotations

$$
\begin{aligned}
& \mathbf{G}_{2} \mathbf{G}_{1} \mathbf{A G}_{1}^{\prime}=\left(\begin{array}{ccc}
5.2000 & 0.4000 & 0.4472 \\
0.6000 & 1.2000 & 1.3416 \\
0 & 0 & 0
\end{array}\right) \\
& \mathbf{G}_{2} \mathbf{G}_{1} \mathbf{A} \mathbf{G}_{1}^{\prime} \mathbf{G}_{2}^{\prime}=\left(\begin{array}{ccc}
5.2000 & 0.6000 & 0 \\
0.6000 & 1.8000 & 0 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Just for your information, the eigenvalues are 5.3028, 1.6972, 0.

