ESO 208A; ESO 218

Computational methods in engineering

Tutorial \# 1

1. (a) Evaluate the polynomial $y=x^{3}-7 x^{2}+8 x-0.35$ at $\mathrm{x}=1.37$. Use 3 -digit arithmetic with chopping.

Evaluate the percent relative error.
(b) Repeat (a) but express y as $y=((x-7) x+8) x-0.35$

Evaluate the error and compare with part (a)
2. Use forward and backward difference approximations of $O(h)$ and a central difference approximation of $O\left(h^{2}\right)$ to estimate the first derivative of the function $f(x)=25 x^{3}-6 x^{2}+7 x-88$. Evaluate the derivative at $x=2$ using a step size of $h=0.2$. Compare the results with the true value of the derivative.
3. Determine the real root of $f(x)=-26+85 x-91 x^{2}+44 x^{3}-8 x^{4}+x^{5}$
(a) Graphically;
(b) Use the bisection method to determine the root to $\varepsilon_{\mathrm{s}}=10 \%$. Initial guesses of $x_{1}=0.5$ and $x_{u}=1$.
(c) Perform the same computation as in (b) but use the false-position method and $\varepsilon_{\mathrm{s}}=0.2 \%$.

