ESO 208A; ESO 218

Computational methods in engineering

Tutorial \# 2

1) Employ the Newton-Raphson method to determine a real root of $f(x)=-x^{2}+1.8 x+2.5$ using initial guess of 5. Perform the computation until ε_{a} is less than 0.05%.
Attempt the above problem by fixed point iteration.
2) Use Muller's method to determine the real and complex roots of $f(x)=2 x^{4}+6 x^{2}+8$.
3) Use Bairstow's method to determine the roots of $f(x)=x^{4}-2 x^{3}+6 x^{2}-2 x+5$.
4) Determine the roots of simultaneous nonlinear equations
$y=-x^{2}+x+0.75$
$y+5 x y=x^{2}$
Employ initial guesses of $x=y=1.2$.
