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OUTLINE 



BACKGROUND 

 Computer Supported Collaborative Learning is a 

pedagogical approach.  

 In CSCL, better learning takes place via social 

interaction (McGrath, 1984)  

 Involves using a computer or internet.  

 



ILLUSTRATIVE EXAMPLE OF COLLABORATIVE 

LEARNING E-TUTOR SYSTEM 

Role of 

E-Tutor 

Posing a 

Question 

Encouraging 

Participation 

Group of 

students 



RESEARCH PROBLEM 

 

 Making the ITS more socially aware of when to 

intervene in collaborative environment and how. 

 

 Use a state representation of a conversation to do so. 
 

 

 

 

 



EXAMPLES OF TUTOR INEFFECTIVENESS 

Figure 1: Quick agreement of proposal without proper 

     discussion. 
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Statistical Models for Topic Segmentation  Barros, B. e Verdejo, M. F, 2000  

Learning to Detect Conversation Focus of 

Threaded Discussions  

Jeffrey C. Reynar  
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Dr. Carolyn P. Rosé  & David Adamson  Coordinating Multi Dimensional Support 
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 Monitoring only occurs in ontask conversations.  

• Filter Pass: 

Uses frequency of domain specific jargon to identify deviations 

from topic over time and enforce focus. 
 

• Trigger Pass: 

 Categorize the conversations into attributes like proposal, 

question, doubt etc. 
 

 Conversation analysis using attributes at two levels : 

 Individual Level 

 Group Level 

 Depending on the trend of conversation, tutor steps  in 

appropriately.  
 

 

 

OUR APPROACH 
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TRIGGER PASS 
 Every chat conversation  is categorized into following attributes: 

 Comment :  Generic statement on an idea 
• EXAMPLE: I THINK….., I BELIEVE……, ANYWAYS…..ETC. 

 Question :  subject pertaining questions 
• EXAMPLE: WHEN DO……, WHEN WILL…., HOW DOES…..ETC. 

 Clarification : Text that answers a question or elaboration. 
• EXAMPLE: TO CLARIFY…., TO ELABORATE…., I MEAN TO SAY……ETC. 

 Consensus/Agreement  : Concludes a discussion 
• EXAMPLE: I AGREE….., THAT’S FINE….., SOUNDS GOOD….ETC. 

 Proposal :  Ideas being proposed or disagreements. 
• EXAMPLE: LET’S TRY….., SHALL WE….., I PROPOSE…..ETC. 

 Doubt:  Depict confusion, conflict or similar sentences. 
• EXAMPLE: I DON’T KNOW…..., I AM LOST….., IS THIS OKAY……ETC. 

 

 Sentence Openers would be used to identify the attributes. 

 Beginning of the sentence can only be one among the given set of 

above choices. 
 Simplicity of implementation. 

 

 

 



STATES OF CONVERSATION 

Confusion Initiative Elaboration Consensus 

Proposal -2 10 10 -5 

Question 3 5 2 1 

Doubt 10 3 1 0 

Comment 0 4 2 0 

Clarification -1 2 8 8 

Agreement 0 0 0 10 

 States (confusion, initiative, elaboration and consensus) are used to evaluate the 

performance of the students (Beatriz Barros, Verdejo et al, 2000). 
 

 New attribute DOUBT and new state CONFUSION were added. 
 

 Individual analysis can be done by observing the frequency of the states in the 

conversation of a student. 

 

 

Figure 5: Weight distribution across states and attributes. 



 Analyzing the group conversation in terms of two variables: 

 Confusion 

 Consensus 

 

GROUP ANALYSIS 
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Figure 6: Distribution of Attribute Vectors for analysis of group conversation. 



 We choose an initial situation relative to which the flow of conversation is 

being analyzed. 

 To track the trends of the conversation, we add the attribute vector to the 

previous state. 

 

 

GROUP ANALYSIS 
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Figure 7: Group Trends for a conversation excerpt.. 



Confusion Consensus Number of 

turns 

Tutor 

Action 

High Low Few Comment 

High Low Many Clarification 

Low High Few Proposals/ 

Elaborations 

Low  High Many Move on 

FUZZY MODEL FOR INTERVENTION 

Figure 8: Distribution the type of intervention tutor should make. 
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IMPLEMENTATION AND RESULTS 

• Case Description: 

• Work setting – High school Bio class. 

• Tutor – Not making relevant comments 

• Group Response – Was unable to understand the 

system and rushed towards conclusion in the end. 
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IMPLEMENTATION AND RESULTS 

Figure 10:  Another  conversation excerpt from another in the similar 

      setting. 



IMPLEMENTATION AND RESULTS 
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• Case Description: 

• Work setting – Undergraduate Students of Thermodynamics Class. 

• Tutor –  More responsive tutor (asking for elaboration and questions) 

• Group Response –  Discussion trend followed by the group. 



IMPLEMENTATION AND RESULTS 

• Case Description: 

• Work setting – Graduate Chemistry Students.  

• Tutor –  Intervenes only to ask questions. 
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FUTURE IMPROVEMENTS 

 The weights assigned for newly created class should be 

determined through some data mining techniques like 

reinforcement learning. 

 Weights can be adaptive to more adequately react to 

local context. 

 Model can be verified on larger corpus of chat data, 

using pre and post tests to do so. 



SUMMARY 

 Identified problems with existing ITS systems. ( Lack of 
responsiveness, local context,  unnecessary interventions 
etc.) 

 Proposed  2 pass architecture: 
 First Pass : Maintaining conversation focus, for2nd pass to 

function within correct context 

 Second Pass : Tracking global trends, detecting when to intervene 
and how.  

 Developed a 2-D state representation method to model a 
conversation as a transition through states, in 2nd pass. 

 Demonstrated how it takes care of existing problems : 
 global context (tracking state transitions over long time on 2-D 

graph) 

 Detecting when to intervene and what type of intervention is 
required (fuzzy model) 

 Presented results and possible future developments. 
 



 

 

 



WORKSPACE SETTING 

 Home like setting ( Informal Setting) 

 No strict limit over time 

 Absence of teacher / authoritative figure 
 

 

 Why? 

 Do not want time constraints on the completion of task. 
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Implementation: 

• Built a classifier model from the available data sets over Chemistry chat sessions. 

• Classifier showed results of :  Kappa - .6909 

Accuracy – 84% 
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 For evaluating whether students are involved in 

learning and in what way, we may calculate the 

above attributes for each student. 

             Vai=ƩNi*Vji 

 where  Vai is the score for ith attribute that a student have 

              Ni is number of times student goes to that state 

              Vji is the wieght of ith category 

 These attributes may be used target questions or 

request s for elaboration to students that are 

participating less. 

 We just want to make sure that students don’t go 

by feeling of “not being caught” in group. 

INDIVIDUAL ANALYSIS 



IMPLEMENTATION RESULTS 

Figure : Demonstration of FSM based implementation of our model.  

Conclusion without 
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Doubts not getting 

clarified. 
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