Intelligent Tutor System: Making Local and Global Context Motivated Interventions

TEAM 2

Priya Goyal, 3rd Year UG, IIT Kanpur Prakhar Ojha, 3rd Year UG, NIT Surathkal Maninderjit Singh, 3rd Year UG, IIT Kanpur Akash Bharadwaj, 3rd Year UG, NIT Surathkal

Mentors:

Dr. Carolyn P. Rose Mr. David Adamson

OUTLINE

- Background
- Research Problem
- Current Tutor Systems
- Earlier Work
- Our Approach
- Implementation and Results
- Future Work
- Summary

BACKGROUND

- Computer Supported Collaborative Learning is a pedagogical approach.
- In CSCL, better learning takes place via social interaction (McGrath, 1984)
- Involves using a computer or internet.

Illustrative Example of Collaborative Learning e-Tutor System

Group of students

42:	1 ni anthony, & me either what does hoitz mean?					
413	nothing for now					
406	ooh, what's the point of this then.					
TUTOR	joins the room					
42:	okay la la loopsy la la loopsy					
	Hi, my name is Sage. I'll be working with you in this activity. Take a minute to introduce					
TUTOR	yourselves.					
413	idk its FOR SCIENCE					
	I won't tell you if you're right or wrong, but I'll give feedback as you discuss each problem					
TUTOR	as a team.					
	As a group, come up with a good scientific explanation for how these two parents could					
TUTOR	produce this litter of kittens.					
	so i guess we are trying to figure ou the traits of the parent cats. the orange one has the					
	dominant trait for orange fur and it dominates over the cat with white fur so the possible					
42:	gene combinations is Ff & ff or FF & ff					
	So, 421 - are you telling us that if both parents have the orange phenotype, it's still					
TUTOR	possible that some of the kittens will be white?					
406	gene					
42:	F being the orange fur trait and f being the white fur trait					
TUTOR	So, 421 - are you telling us that recessive genes aren't always expressed?					
TUTOR	Any input from 406?					
	the white kitten is heterozygous and the orange one is homozygous domanint so there					
413	was no chance of a white kitten in there litter					
TUTOR	So how is this about homozygous genotypes?					
406	the orange cat is homozygous dominant.					
	no, they arent if the dominant trait is present in every outcome, there is no chance of the					
	,,,					

Role of E-Tutor

Posing a Question

Encouraging Participation

RESEARCH PROBLEM

- * Making the ITS more socially aware of **when** to intervene in collaborative environment and **how**.
- * Use a **state representation** of a conversation to do so.

EXAMPLES OF TUTOR INEFFECTIVENESS

TUTOR	< Here's the next problem	07.19.15		
TUTOR	What factors will affect these compounds' relative boiling points? How will the unla 07.19.20			
TUTOR	Type 'ready' when you've finished discussing this.	07.19.35		
S13	all of the molecules are the same in that they are in the same column, the only thing 07.19.59			
S14	yep	07.20.14		
S13	Si has the smallest while Sn has the largest. Do we agree?	07.20.14		
S14	yes	07.20.17		
TUTOR	Ok	07.20.18		
S14	Ready	07.20.29		
TUTOR	Thanks, S14.	07.20.31		
S15	ready	07.20.32		
S13	Ready	07.20.34		
TUTOR	Thanks, S15.	07.20.35		

Figure 1: Quick agreement of proposal without proper discussion.

EARLIER WORK

Author/Year
Barros, B. e Verdejo, M. F, 2000
M. Rosatelli and J. A. Self , 2002
Easton, 1982
Barros, B. e Verdejo, M. F, 2000
Jeffrey C. Reynar
Learning to Detect Conversation Focus of Threaded Discussions
Coordinating Multi Dimensional Support in Collaborative Conversational Agents

OUR APPROACH

- > Monitoring only occurs in ontask conversations.
 - Filter Pass:

Uses frequency of domain specific jargon to identify deviations from topic over time and enforce focus.

- Trigger Pass:
 - > Categorize the conversations into **attributes** like proposal, question, doubt etc.
 - > Conversation analysis using attributes at **two levels**:

Individual Level

Group Level

> Depending on the trend of conversation, tutor steps in appropriately.

Architecture: Bird's Eye View

TRIGGER PASS

- Every chat conversation is categorized into following attributes:
 - Comment: Generic statement on an idea
 - Example: I think....., I believe....., Anyways.....etc.
 - Question: subject pertaining questions
 - EXAMPLE: WHEN DO....., WHEN WILL..., HOW DOES.....ETC.
 - Clarification: Text that answers a question or elaboration.
 - Example: To clarify...., to elaborate...., I mean to say.....etc.
 - Consensus/Agreement : Concludes a discussion
 - Example: I agree...., that's fine...., sounds good...etc.
 - **Proposal**: Ideas being proposed or disagreements.
 - EXAMPLE: LET'S TRY....., SHALL WE....., I PROPOSE.....ETC.
 - **Doubt:** Depict confusion, conflict or similar sentences.
 - EXAMPLE: I DON'T KNOW....., I AM LOST...., IS THIS OKAY.....ETC.
- Sentence Openers would be used to identify the attributes.
 - Beginning of the sentence can only be one among the given set of above choices.
 - Simplicity of implementation.

STATES OF CONVERSATION

	Confusion	Initiative	Elaboration	Consensus
Proposal	-2	10	10	-5
Question	3	5	2	1
Doubt	10	3	1	0
Comment	0	4	2	0
Clarification	-1	2	8	8
Agreement	0	0	0	10

Figure 5: Weight distribution across states and attributes.

- ❖ States (confusion, initiative, elaboration and consensus) are used to evaluate the performance of the students (Beatriz Barros, Verdejo et al, 2000).
- ❖ New attribute DOUBT and new state CONFUSION were added.
- ❖ Individual analysis can be done by observing the frequency of the states in the conversation of a student.

GROUP ANALYSIS

- Analyzing the group conversation in terms of two variables:
 - Confusion
 - Consensus

Vectorial Representation of Attributes

Figure 6: Distribution of Attribute Vectors for analysis of group conversation.

GROUP ANALYSIS

- We choose an initial situation relative to which the flow of conversation is being analyzed.
- To track the trends of the conversation, we add the attribute vector to the previous state.

Figure 7: Group Trends for a conversation excerpt..

Consensus

FUZZY MODEL FOR INTERVENTION

Confusion	Consensus	Number of turns	Tutor Action
High	Low	Few	Comment
High	Low	Many	Clarification
Low	High	Few	Proposals/ Elaborations
Low	High	Many	Move on

Figure 8: Distribution the type of intervention tutor should make.

• Case Description:

Confusion

- Work setting High school Bio class.
- Tutor Not making relevant comments
- Group Response Was unable to understand the system and rushed towards conclusion in the end.

Figure 10: Another conversation excerpt from another in the similar setting.

• Case Description:

Confusion

- Work setting Undergraduate Students of Thermodynamics Class.
- Tutor More responsive tutor (asking for elaboration and questions)
- Group Response Discussion trend followed by the group.

- Case Description:
 - Work setting Graduate Chemistry Students.
 - Tutor Intervenes only to ask questions.

FUTURE IMPROVEMENTS

- The weights assigned for newly created class should be determined through some data mining techniques like reinforcement learning.
- Weights can be adaptive to more adequately react to local context.
- Model can be verified on larger corpus of chat data, using pre and post tests to do so.

SUMMARY

- Identified problems with existing ITS systems. (Lack of responsiveness, local context, unnecessary interventions etc.)
- Proposed 2 pass architecture:
 - First Pass: Maintaining conversation focus, for2nd pass to function within correct context
 - Second Pass: Tracking global trends, detecting when to intervene and how.
- Developed a 2-D state representation method to model a conversation as a transition through states, in 2nd pass.
- Demonstrated how it takes care of existing problems:
 - global context (tracking state transitions over long time on 2-D graph)
 - Detecting when to intervene and what type of intervention is required (fuzzy model)
- Presented results and possible future developments.

THANK YOU!!!

WORKSPACE SETTING

- Home like setting (Informal Setting)
 - No strict limit over time
 - Absence of teacher / authoritative figure

- * Why?
 - Do not want time constraints on the completion of task.

Implementation:

- Built a classifier model from the available data sets over Chemistry chat sessions.
- Classifier showed results of : Kappa .6909
 Accuracy 84%

INDIVIDUAL ANALYSIS

• For evaluating whether students are involved in learning and in what way, we may calculate the above attributes for each student.

$$V_{ai} = \sum N_i V_{ji}$$

where Vai is the score for ith attribute that a student have
Ni is number of times student goes to that state
Vji is the wieght of ith category

- These attributes may be used target questions or request s for elaboration to students that are participating less.
- We just want to make sure that students don't go by feeling of "not being caught" in group.

Figure : Demonstration of FSM based implementation of our model.