MTH101N, 2011-12, Quiz 1A

Max Marks 20
Name

Time 17:20-17:50
Roll No.

1. A girl flies a kite at a height of 300 ft , the wind carrying the kite horizontally away from her at a rate of $20 \mathrm{ft} / \mathrm{sec}$. How fast must she let out the string when the kite is 500 ft away from her?
Sol:

- See figure. The relation between x and y is given by

$$
y^{2}=x^{2}+300^{2}
$$

- Therefore, $2 y \frac{d y}{d t}=2 x \frac{d x}{d t}$.
- Given is $d x / d t=20 \mathrm{ft} / \mathrm{sec}$. To find $d y / d t$ at the point when $y=500$ i.e., at $x=400$.
- Answer is $\left.\frac{d y}{d t}\right|_{y=500}=\frac{x}{y} \frac{d x}{d t}=\frac{400}{500} \times 20=16 \mathrm{ft} / \mathrm{sec}$.

2. Circle the correct option for the following question (-3 marks will be awarded for a wrong answer): The number of points where the function $f(x)=\max \left\{\cos x, x^{2}-1\right\}$ is not differentiable in the interval $(-\pi, \pi)$ is

$$
0,1,2,3,4
$$

Note: $F(x)=\max \{g(x), h(x)\}$ is defined as the maximum of the values $g(x)$ and $h(x)$ at each point x.

Sol: See figure. Answer is 2 . Remember to deduct 3 marks for a wrong answer or more than one answer.
3. Let $x_{1}=1$. Define $x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{2}{x_{n}}\right)$ for all $n \in \mathbb{N}$. Prove that the sequence $\left\{x_{n}\right\}$ is convergent and find its limit.

Sol:

- Note that $x_{n} \geq 0, \forall n$.

As $x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{2}{x_{n}}\right) \geq \sqrt{x_{n} \frac{2}{x_{n}}}=\sqrt{2}$ (by the A.M -G.M. inequality).

- Thus $x_{n+1} \geq \sqrt{2}, \forall n$. Hence, $\left(x_{n}\right)$ is bounded below. Further $x_{n+1}-x_{n}=\frac{1}{2}\left(x_{n}+\frac{2}{x_{n}}\right)-x_{n} \leq 0$. Thus $\left(x_{n}\right)$ is a decreasing sequence which is also bounded below and is therefore convergent.
- Let $\lim _{n \longrightarrow \infty} x_{n}=\ell . \quad \ell=\frac{1}{2}\left(\frac{\ell^{2}+2}{\ell}\right) \Rightarrow \ell= \pm \sqrt{2}$. As x_{n} are nonnegative, the limit is also non negative and therefore $\ell=\sqrt{2}$.
Note: Here if they just right $\ell=\sqrt{2}$, and do not rule out the case $\ell=\sqrt{-2}$, still give (2) marks.

