MTH101N, 2011-12, Quiz 1A

Max Marks 20 Time 17:20-17:50 Name Roll No.

 A girl flies a kite at a height of 300 ft, the wind carrying the kite horizontally away from her at a rate of 20 ft/sec. How fast must she let out the string when the kite is 500 ft away from her?

Sol:

• See figure. The relation between x and y is given by

$$y^2 = x^2 + 300^2$$

[2]

- Therefore, $2y\frac{dy}{dt} = 2x\frac{dx}{dt}$. [1]
- Given is dx/dt = 20 ft/sec. To find dy/dt at the point when y = 500 i.e., at x = 400. [2]
- Answer is $\frac{dy}{dt}|_{y=500} = \frac{x}{y}\frac{dx}{dt} = \frac{400}{500} \times 20 = 16$ ft/sec. [1]
- 2. Circle the correct option for the following question (-3 marks will be awarded for a wrong answer): The number of points where the function $f(x) = \max\{\cos x, x^2 1\}$ is not differentiable in the interval $(-\pi, \pi)$ is

Note: $F(x) = \max\{g(x), h(x)\}$ is defined as the maximum of the values g(x) and h(x) at each point x.

[6]

Sol: See figure. Answer is 2. Remember to deduct 3 marks for a wrong answer or more than one answer.

- 3. Let $x_1 = 1$. Define $x_{n+1} = \frac{1}{2} \left(x_n + \frac{2}{x_n} \right)$ for all $n \in \mathbb{N}$. Prove that the sequence $\{x_n\}$ is convergent and find its limit.
 - [8]

Sol:

• Note that
$$x_n \ge 0, \forall n$$
.
As $x_{n+1} = \frac{1}{2} \left(x_n + \frac{2}{x_n} \right) \ge \sqrt{x_n \frac{2}{x_n}} = \sqrt{2}$ (by the A.M -G.M. inequality). [3]

- Thus $x_{n+1} \ge \sqrt{2}$, $\forall n$. Hence, (x_n) is bounded below. Further $x_{n+1} - x_n = \frac{1}{2}(x_n + \frac{2}{x_n}) - x_n \le 0$. Thus (x_n) is a decreasing sequence which is also bounded below and is therefore convergent. [3]
- Let $\lim_{n \to \infty} x_n = \ell$. $\ell = \frac{1}{2} \left(\frac{\ell^2 + 2}{\ell} \right) \Rightarrow \ell = \pm \sqrt{2}$. As x_n are nonnegative, the limit is also non negative and therefore $\ell = \sqrt{2}$. [2] **Note:** Here if they just right $\ell = \sqrt{2}$, and do not rule out the case $\ell = \sqrt{-2}$, still give (2) marks.