\qquad

1. Let $\left(x_{n}\right)$ be a sequence defined by

$$
x_{n}=n^{\alpha}(1+\beta)^{-n} \sin n
$$

for all $n \in \mathbb{N}$ where α and β are fixed positive real numbers. Show that $\left(x_{n}\right)$ converges. [Do not try with the L'Hospital Rule].
2. Using the mean value theorem, show that $\frac{1}{2 \sqrt{n+1}}<\sqrt{n+1}-\sqrt{n}<\frac{1}{2 \sqrt{n}}$ for all $n \in \mathbb{N}$.
3. Let $f:[0,12] \rightarrow \mathbb{R}$ be continuous and $f(0)=f(12)$. Show that there exist $x_{1}, x_{2}, x_{3}, x_{4} \in[0,12]$ such that $x_{2}-x_{1}=6, x_{4}-x_{3}=3, f\left(x_{1}\right)=f\left(x_{2}\right)$ and $f\left(x_{3}\right)=f\left(x_{4}\right)$.

Tentative Marking Scheme

1. Let $y_{n}=\frac{n^{\alpha}}{(1+\beta)^{n}}$. Then $\frac{y_{n+1}}{y_{n}}=\left(\frac{n+1}{n}\right)^{\alpha} \frac{1}{1+\beta} \rightarrow \frac{1}{1+\beta}<1$.

Therefore $y_{n} \rightarrow 0$.
Since $\left|x_{n}\right| \leq\left|y_{n}\right|$ (or $(\sin n)$ is a bounded sequence), $x_{n} \rightarrow 0$.
2. By the MVT $\sqrt{n+1}-\sqrt{n}=\frac{1}{2 \sqrt{c}}$ for some $c \in(n, n+1)$.

Since $c \in(n, n+1), \frac{1}{2 \sqrt{n+1}}<\frac{1}{2 \sqrt{c}}<\frac{1}{2 \sqrt{n}}$.
3. Define $g(x)=f(x+6)-f(x)$.

Then $g(0)=f(6)-f(0)$ and $g(6)=f(12)-f(6)=f(0)-f(6)$.
By IVP, $\exists x_{1} \in[0,6]$ such that $g\left(x_{1}\right)=0$.
This implies that $f\left(x_{1}\right)=f\left(x_{2}\right)$ where $x_{2}=x_{1}+6$.
Define $g_{1}(x)=f(x+3)-f(x)$.
Then $g_{1}\left(x_{1}\right)=f\left(x_{1}+3\right)-f\left(x_{1}\right)$ and $g_{1}\left(x_{1}+3\right)=f\left(x_{1}+6\right)-f\left(x_{1}+3\right)$ $=f\left(x_{1}\right)-f\left(x_{1}+3\right)$.
By IVP, $\exists x_{3} \in\left[x_{1}, x_{1}+3\right]$ such that $g_{1}\left(x_{3}\right)=0$.
This implies that $f\left(x_{3}\right)=f\left(x_{4}\right)$ where $x_{4}=x_{3}+3$.

NAME: \qquad

1. Using mean value theorem, show that $\frac{x-1}{x}<\ln x<x-1$ for $x>1$.
2. Let $\left(x_{n}\right)$ be a sequence defined by

$$
x_{n}=(1+\alpha)^{-n} n^{\beta} \cos n
$$

for all $n \in \mathbb{N}$ where α and β are fixed positive real numbers. Show that $\left(x_{n}\right)$ converges. [Do not try with the L'Hospital Rule].
3. Let $f:[0,8] \rightarrow \mathbb{R}$ be continuous and $f(0)=f(8)$. Show that there exist $x_{1}, x_{2}, x_{3}, x_{4} \in[0,8]$ such that $x_{2}-x_{1}=4, x_{4}-x_{3}=2, f\left(x_{1}\right)=f\left(x_{2}\right)$ and $f\left(x_{3}\right)=f\left(x_{4}\right)$.

Tentative Marking Scheme

1. By the MVT, there exists $c \in(1, x)$ such that $\ln x-\ln 1=\frac{1}{c}(x-1)$.

Since $c \in(1, x), \frac{x-1}{x}<\frac{1}{c}(x-1)<x-1$.
2. Let $y_{n}=\frac{n^{\beta}}{(1+\alpha)^{n}}$. Then $\frac{y_{n+1}}{y_{n}}=\left(\frac{n+1}{n}\right)^{\beta} \frac{1}{1+\alpha} \rightarrow \frac{1}{1+\alpha}<1$.

Therefore $y_{n} \rightarrow 0$.
Since $\left|x_{n}\right| \leq\left|y_{n}\right|$ (or $(\cos n)$ is a bounded sequence), $x_{n} \rightarrow 0$.
3. Define $g(x)=f(x+4)-f(x)$.

Then $g(0)=f(4)-f(0)$ and $g(4)=f(8)-f(4)=f(0)-f(4)$.
By IVP, $\exists x_{1} \in[0,4]$ such that $g\left(x_{1}\right)=0$.
This implies that $f\left(x_{1}\right)=f\left(x_{2}\right)$ where $x_{2}=x_{1}+4$.
Define $g_{1}(x)=f(x+2)-f(x)$.
Then $g_{1}\left(x_{1}\right)=f\left(x_{1}+2\right)-f\left(x_{1}\right)$ and $g_{1}\left(x_{1}+2\right)=f\left(x_{1}+4\right)-f\left(x_{1}+2\right)$
$=f\left(x_{1}\right)-f\left(x_{1}+2\right)$.
By IVP, $\exists x_{3} \in\left[x_{1}, x_{1}+2\right]$ such that $g_{1}\left(x_{3}\right)=0$.
This implies that $f\left(x_{3}\right)=f\left(x_{4}\right)$ where $x_{4}=x_{3}+2$.

