NAME: -

Roll No.——— Section: ——

1. Let (x_n) be a sequence defined by

$$x_n = n^{\alpha} (1+\beta)^{-n} \sin n$$

for all $n \in \mathbb{N}$ where α and β are fixed positive real numbers. Show that (x_n) converges. [Do not try with the L'Hospital Rule]. [4]

- 2. Using the mean value theorem, show that $\frac{1}{2\sqrt{n+1}} < \sqrt{n+1} \sqrt{n} < \frac{1}{2\sqrt{n}}$ for all $n \in \mathbb{N}$. [4]
- 3. Let $f : [0, 12] \to \mathbb{R}$ be continuous and f(0) = f(12). Show that there exist $x_1, x_2, x_3, x_4 \in [0, 12]$ such that $x_2 x_1 = 6$, $x_4 x_3 = 3$, $f(x_1) = f(x_2)$ and $f(x_3) = f(x_4)$. [7]

Tentative Marking Scheme

1. Let
$$y_n = \frac{n^{\alpha}}{(1+\beta)^n}$$
. Then $\frac{y_{n+1}}{y_n} = \left(\frac{n+1}{n}\right)^{\alpha} \frac{1}{1+\beta} \to \frac{1}{1+\beta} < 1.$ [2]
Therefore $y_n \to 0.$ [1]

Since $|x_n| \le |y_n|$ (or $(\sin n)$ is a bounded sequence), $x_n \to 0$. [1]

2. By the MVT
$$\sqrt{n+1} - \sqrt{n} = \frac{1}{2\sqrt{c}}$$
 for some $c \in (n, n+1)$. [3]
Since $c \in (n, n+1), \frac{1}{2\sqrt{n+1}} < \frac{1}{2\sqrt{c}} < \frac{1}{2\sqrt{n}}$. [1]

3. Define
$$g(x) = f(x+6) - f(x)$$
. [1]

Then g(0) = f(6) - f(0) and g(6) = f(12) - f(6) = f(0) - f(6).

By IVP, $\exists x_1 \in [0, 6]$ such that $g(x_1) = 0.$ [2] This implies that $f(x_1) = f(x_2)$ where $x_2 = x_1 + 6.$

Define $g_1(x) = f(x+3) - f(x)$. [2]

Then
$$g_1(x_1) = f(x_1+3) - f(x_1)$$
 and $g_1(x_1+3) = f(x_1+6) - f(x_1+3)$
= $f(x_1) - f(x_1+3)$. [2]

By IVP, $\exists x_3 \in [x_1, x_1 + 3]$ such that $g_1(x_3) = 0$.

This implies that $f(x_3) = f(x_4)$ where $x_4 = x_3 + 3$.

MTH101A - Quiz 1B, 23.08.2013(17:25-17:45 hrs), Maximum Marks: 15

NAME:	Roll No.——	Section: ——
-------	------------	-------------

- 1. Using mean value theorem, show that $\frac{x-1}{x} < \ln x < x 1$ for x > 1. [4]
- 2. Let (x_n) be a sequence defined by

$$x_n = (1+\alpha)^{-n} n^\beta \cos n$$

for all $n \in \mathbb{N}$ where α and β are fixed positive real numbers. Show that (x_n) converges. [Do not try with the L'Hospital Rule]. [4]

3. Let $f : [0,8] \to \mathbb{R}$ be continuous and f(0) = f(8). Show that there exist $x_1, x_2, x_3, x_4 \in [0,8]$ such that $x_2 - x_1 = 4$, $x_4 - x_3 = 2$, $f(x_1) = f(x_2)$ and $f(x_3) = f(x_4)$. [7]

Tentative Marking Scheme

- 1. By the MVT, there exists $c \in (1, x)$ such that $\ln x \ln 1 = \frac{1}{c}(x 1)$. [3] Since $c \in (1, x), \frac{x-1}{x} < \frac{1}{c}(x - 1) < x - 1$. [1]
- 2. Let $y_n = \frac{n^{\beta}}{(1+\alpha)^n}$. Then $\frac{y_{n+1}}{y_n} = \left(\frac{n+1}{n}\right)^{\beta} \frac{1}{1+\alpha} \to \frac{1}{1+\alpha} < 1.$ [2] Therefore $y_n \to 0.$ [1]

Since $|x_n| \le |y_n|$ (or $(\cos n)$ is a bounded sequence), $x_n \to 0$. [1]

3. Define g(x) = f(x + 4) - f(x). [1] Then g(0) = f(4) - f(0) and g(4) = f(8) - f(4) = f(0) - f(4). By IVP, $\exists x_1 \in [0, 4]$ such that $g(x_1) = 0$. [2] This implies that $f(x_1) = f(x_2)$ where $x_2 = x_1 + 4$. Define $g_1(x) = f(x + 2) - f(x)$. [2] Then $g_1(x_1) = f(x_1 + 2) - f(x_1)$ and $g_1(x_1 + 2) = f(x_1 + 4) - f(x_1 + 2)$ $= f(x_1) - f(x_1 + 2)$. [2] By IVP, $\exists x_3 \in [x_1, x_1 + 2]$ such that $g_1(x_3) = 0$. This implies that $f(x_3) = f(x_4)$ where $x_4 = x_3 + 2$.