Instructions: Type ONLY the correct option(s) of all the questions in the box below the pdf file in the portal(for example if in question 3 the correct options are a,b,c then type 3 . a,b,c in the box) then click save and submit.
Each question will be evaluated to the following marking scheme

- Full Marks: +4 if only (all) the correct option(s) is (are) chosen.
- Partial Marks: +2 if ONLY correct option (s) is (are) chosen but some correct option(s) is (are) left out.
- Zero Mark: If one wrong option is chosen.
- Negative Mark: -1 if more than one wrong options are chosen.

Notations:

\mathbb{R} denotes set of reals and \mathbb{Q} set of rational.
lub (sup) and glb (inf) stand for least upper bound (supremum) and greatest lower bound (infimum) respectively.
(1) Which of the following statement(s) is (are) true.
(a) There does NOT exist sets S and T with $\sup S \leq \inf T$ and $S \cap T \neq \emptyset$.
(b) Let $\alpha=\inf S$ and $\beta>\alpha$ there exists an element $x \in S$ such that $x<\beta$.
(c) Let $\alpha=\sup S$ and $\beta<\alpha$ there exists an element $x \in S$ such that $x>\beta$.
(d) If $A \subset \mathbb{R} \backslash \mathbb{Q}$ and bounded then $\inf A \in \mathbb{Q}$.

Answer: b,c
(2) Which of the following statement(s) is (are) true.
(a) $\left\{\frac{n+1}{n-1}\right\}_{n \geq 2}$ is a decreasing sequence and converges to 1 as $n \rightarrow \infty$.
(b) $\lim _{n \rightarrow \infty} n^{-n-\frac{1}{n}}(1+n)^{n}=\frac{1}{e}$.
(c) Consider the recurrence relation $x_{n+1}=x_{n}+x_{n-1}, n=1,2, \ldots$, where $x_{0}=$ $x_{1}=1$. Define the sequence $y_{n}=\frac{x_{n}}{x_{n+1}}$. Then $\left\{y_{n}\right\}$ does not have any convergent subsequence.
(d) If $x_{1}=2$ and x_{n} 's are defined recursively as $x_{n+1}=2+\frac{1}{x_{n}}$ then $\left\{x_{n}\right\}$ is a Cauchy sequence.

Answer: a,d
(3) Which of the following statement(s) is (are) true.
(a) Let $a \in \mathbb{R}, f(x)<g(x)$, and $\lim _{x \rightarrow a} f(x)=l, \lim _{x \rightarrow a} g(x)=m$. Then $l<m$.
(b) Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function and $f\left(\frac{1}{2}\right)=1$ then there exists a closed interval $I \subset[0,1]$ such that $f(x)>\frac{1}{2}$ for all $x \in I$.
(c) Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous such that $f(a)<a$ and $f(b)>b$. Then there exists a $x \in[a, b]$ such that $f(x)=x$.
(d) If f is a monotonically increasing function then $\lim _{x \rightarrow a} f(x)=\sup \{f(x): x<a\}$.

Answer: b,c,d
(4) Which of the following statement(s) is (are) true.
(a) $f(x)=|x|^{\frac{1001}{1000}}$ is not differentiable at 0 .
(b) Let $f:(-1,1) \rightarrow \mathbb{R}$ be a differentiable function such that $f^{\prime}(0)<0$. There exists a $\delta>0$ such that $f(x)<f(0)$ for all $x \in(0, \delta)$.
(c) $|\cos x-\cos y| \leq|x-y|$ for all $x, y \in \mathbb{R}$.
(d) There exists $x \in[0, \pi]$ such that $e^{x} \cos x+1=0$.

Answer: b,c,d

