QUIZ 1

MTH 101A, 5TH OCTOBER 2020

Time: 25 mins

Full Marks: 16

Instructions: Type ONLY the correct option(s) of all the questions in the box below the pdf file in the portal (for example if in question 3 the correct options are a,b,c then type 3. a,b,c in the box) then click save and submit.

Each question will be evaluated to the following marking scheme

- Full Marks: +4 if only (all) the correct option(s) is (are) chosen.
- Partial Marks: +2 if ONLY correct option (s) is (are) chosen but some correct option(s) is (are) left out.
- Zero Mark: If one wrong option is chosen.
- Negative Mark: -1 if more than one wrong options are chosen.

Notations:

 \mathbb{R} denotes set of reals and \mathbb{Q} set of rational.

lub (sup) and glb (inf) stand for least upper bound (supremum) and greatest lower bound (infimum) respectively.

- (1) Which of the following statement(s) is (are) true.
 - (a) There does NOT exist sets S and T with $\sup S \leq \inf T$ and $S \cap T \neq \emptyset$.
 - (b) Let $\alpha = \inf S$ and $\beta > \alpha$ there exists an element $x \in S$ such that $x < \beta$.
 - (c) Let $\alpha = \sup S$ and $\beta < \alpha$ there exists an element $x \in S$ such that $x > \beta$.
 - (d) If $A \subset \mathbb{R} \setminus \mathbb{Q}$ and bounded then $\inf A \in \mathbb{Q}$.

Answer: b,c

- (2) Which of the following statement(s) is (are) true.
 - (a) $\{\frac{n+1}{n-1}\}_{n\geq 2}$ is a decreasing sequence and converges to 1 as $n\to\infty$.
 - (b) $\lim_{n \to \infty} n^{-n-\frac{1}{n}} (1+n)^n = \frac{1}{e}.$
 - (c) Consider the recurrence relation $x_{n+1} = x_n + x_{n-1}$, n = 1, 2, ..., where $x_0 = x_1 = 1$. Define the sequence $y_n = \frac{x_n}{x_{n+1}}$. Then $\{y_n\}$ does not have any convergent subsequence.
 - (d) If $x_1 = 2$ and x_n 's are defined recursively as $x_{n+1} = 2 + \frac{1}{x_n}$ then $\{x_n\}$ is a Cauchy sequence.

Answer: a,d

- (3) Which of the following statement(s) is (are) true.
 - (a) Let $a \in \mathbb{R}$, f(x) < g(x), and $\lim_{x \to a} f(x) = l$, $\lim_{x \to a} g(x) = m$. Then l < m.
 - (b) Let $f: [0,1] \to \mathbb{R}$ be a continuous function and $f(\frac{1}{2}) = 1$ then there exists a closed interval $I \subset [0,1]$ such that $f(x) > \frac{1}{2}$ for all $x \in I$.
 - (c) Let $f : [a, b] \to \mathbb{R}$ be continuous such that f(a) < a and f(b) > b. Then there exists a $x \in [a, b]$ such that f(x) = x.
 - (d) If f is a monotonically increasing function then $\lim_{x \to a} f(x) = \sup \{f(x) : x < a\}$.

Answer: b,c,d

(4) Which of the following statement(s) is (are) true.
(a) f(x) = |x|¹⁰⁰¹/₁₀₀₀ is not differentiable at 0.

(b) Let $f: (-1, 1) \to \mathbb{R}$ be a differentiable function such that f'(0) < 0. There exists a $\delta > 0$ such that f(x) < f(0) for all $x \in (0, \delta)$.

(c) $|\cos x - \cos y| \le |x - y|$ for all $x, y \in \mathbb{R}$.

(d) There exists $x \in [0, \pi]$ such that $e^x \cos x + 1 = 0$.

Answer: b,c,d