Department of Mathematics and Statistics, I.I.T. Kanpur MTH101N -First Mid-Semester Examination - 30.8.2008

Answer all questions.

1. (a) Let $x_{1}=1$ and $x_{n+1}=\frac{1}{2+x_{n}^{2}}$. Show that the sequence $\left(x_{n}\right)$ converges.
(b) Let $x_{n}=\left(\frac{a^{n}+b^{n}+c^{n}}{3}\right)^{\frac{1}{n}}+n^{a} a^{1-n}$ where $1<a<b<c$. Show that the sequence (x_{n}) converges and find its limit.
2. (a) Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function. Show that there exists $x_{0} \in$ $[0,1]$ such that $f\left(x_{0}\right)=\frac{1}{3}\left(f\left(\frac{1}{4}\right)+f\left(\frac{1}{2}\right)+f\left(\frac{3}{4}\right)\right)$.
(b) Let $f:[0,1] \rightarrow \mathbb{R}$ be differentiable, $f\left(\frac{1}{2}\right)=\frac{1}{2}$ and $0<\alpha<1$ for some α. Suppose $\left|f^{\prime}(x)\right| \leq \alpha$ for all $x \in[0,1]$. Show that $|f(x)|<1$ for all $x \in[0,1]$.
3. (a) Show that the equation $7 x^{17}-e^{-x}-5=0$ has exactly one real root.
(b) Sketch the graph of the function $f(x)=\frac{2 x^{2}-1}{x^{2}-1}$ after locating the intervals where the function is increasing and decreasing, convexity and concavity, the local maxima and minima, and the asymptotes.
4. (a) Show that $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^{p}}$ converges if and only if $p>1$. (Do not use the integral test!).
(b) Show that for $x>0,\left|\log (x+1)-\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}\right)\right| \leq \frac{x^{4}}{4}$.
