Department of Mathematics and Statistics, I.I.T. Kanpur

MTH101N - First Mid-Semester Examination - 30.8.2008

Maximum Marks: 40 T

Time: 8:00-9:00 a.m

Answer all questions.

- 1. (a) Let $x_1 = 1$ and $x_{n+1} = \frac{1}{2+x_n^2}$. Show that the sequence (x_n) converges. [4]
 - (b) Let $x_n = \left(\frac{a^n + b^n + c^n}{3}\right)^{\frac{1}{n}} + n^a a^{1-n}$ where 1 < a < b < c. Show that the sequence (x_n) converges and find its limit. [6]
- 2. (a) Let $f : [0,1] \to \mathbb{R}$ be a continuous function. Show that there exists $x_0 \in [0,1]$ such that $f(x_0) = \frac{1}{3}(f(\frac{1}{4}) + f(\frac{1}{2}) + f(\frac{3}{4})).$ [5]
 - (b) Let $f : [0,1] \to \mathbb{R}$ be differentiable, $f(\frac{1}{2}) = \frac{1}{2}$ and $0 < \alpha < 1$ for some α . Suppose $|f'(x)| \le \alpha$ for all $x \in [0,1]$. Show that |f(x)| < 1 for all $x \in [0,1]$. [5]
- 3. (a) Show that the equation $7x^{17} e^{-x} 5 = 0$ has exactly one real root. [4]
 - (b) Sketch the graph of the function $f(x) = \frac{2x^2-1}{x^2-1}$ after locating the intervals where the function is increasing and decreasing, convexity and concavity, the local maxima and minima, and the asymptotes. [6]
- 4. (a) Show that $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^p}$ converges if and only if p > 1. (Do not use the integral test !). [5]
 - (b) Show that for x > 0, $|\log(x+1) (x \frac{x^2}{2} + \frac{x^3}{3})| \le \frac{x^4}{4}$. [5]