Instructions: 1. Please write your Name and Roll Number and Section Number correctly on the answer booklet. If any of these is missing, marks will be deducted.
2. Attempt each question on a new page and attempt all the parts of a question at the same place.

1. (a) Investigate the convergence of the sequence $a_{n}=\frac{n^{2}}{3^{n}}, n=1,2, \ldots$. Ans:

- Note $a_{n} \geq 0$.

Consider $\frac{a_{n+1}}{a_{n}}=\frac{(n+1)^{2}}{3^{(n+1)}} \frac{3^{n}}{n^{2}}=\frac{1}{3}\left(1+\frac{1}{n}\right)^{2} \rightarrow \frac{1}{3}$.

- $\frac{a_{n+1}}{a_{n}} \rightarrow \frac{1}{3}<1$. Therefore, $a_{n} \rightarrow 0$ as $n \rightarrow \infty$.
(b) Determine if the series $\sum_{n=1}^{\infty}(n+2)\left(1-\cos \left(\frac{1}{n}\right)\right)$ is convergent or divergent. [5]

Ans:

- Let $a_{n}=(n+2)\left(1-\cos \left(\frac{1}{n}\right)\right)$. and let $b_{n}=n\left(1-\cos \left(\frac{1}{n}\right)\right)$. Note $a_{n}, b_{n} \geq$ 0 . Then as $\frac{a_{n}}{b_{n}} \rightarrow 1$, the series $\sum_{n=1}^{\infty} a_{n}$ and the series $\sum_{n=1}^{\infty} b_{n}$ converge or diverge together.
- Let $c_{n}=\frac{1}{n}$. Then $\lim _{n \rightarrow \infty} \frac{b_{n}}{c_{n}}=\lim _{n \rightarrow \infty} \frac{n\left(1-\cos \left(\frac{1}{n}\right)\right.}{1 / n}=\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}=$ $\lim _{x \rightarrow 0} \frac{\sin x}{2 x}=1 / 2$.
- Therefore, the series $\sum_{n=1}^{\infty} b_{n}$ and the series $\sum_{n=1}^{\infty} c_{n}$ converge or diverge together. But since $\sum \frac{1}{n}$ is divergent, the series $\sum a_{n}$ is also divergent. [2]
(c) Determine all values of x for which the series $\sum_{n=2}^{\infty} \frac{x^{n}}{n(\ln n)^{2}}$ converges. Give reasons for your answer.
Ans:
- Consider $\frac{a_{n+1}}{a_{n}}=\frac{n(\ln n)^{2}}{(n+1)(\ln (1+n))^{2}} \rightarrow 1$ as $n \rightarrow \infty$.
- Therefore, the given series is convergent for all $x:|x|<1$.
- For the case $x=1$ note that $a_{n} \geq 0, a_{n} \downarrow$. Therefore by Cauchy's condensation test, the series $\sum \frac{1}{n(\ln n)^{2}}$ converges iff the series $\sum 2^{k} a_{2^{k}}=$
$\sum 2^{k} \frac{1}{2^{k}\left(\ln 2^{k}\right)^{2}}$ converges. But then this is same as the series $\sum \frac{1}{k^{2}(\ln 2)^{2}}$, which is convergent.
- For $x=-1$ the series converges since it converges absolutely by previous case.
Alternately, the Leibniz test also can be used here to conclude that the series $\sum \frac{(-1)^{n}}{n(\ln n)^{2}}$ converges as $\frac{1}{n(\ln n)^{2}} \geq 0$ and $\frac{1}{n(\ln n)^{2}} \downarrow 0$.
Hence the given series converges for all $x:|x| \leq 1$.

2. (a) Compute the limit $\lim _{x \rightarrow \infty}\left(x^{2}-x^{3} \sin \left(\frac{1}{x}\right)\right)$.

Ans:

- $x^{2}-x^{3} \sin \left(\frac{1}{x}\right)=\frac{1-x \sin (1 / x)}{1 / x^{2}}$
- Therefore the given limit is same as $\lim _{x \rightarrow \infty} \frac{1-x \sin (1 / x)}{1 / x^{2}}=\lim _{y \rightarrow 0} \frac{1-\frac{\sin y}{y}}{y^{2}}[4]$
- The above is equal to $\lim _{y \rightarrow 0} \frac{y-\sin y}{y^{3}}=\lim _{y \rightarrow 0} \frac{\sin y}{6 y}=1 / 6$.
(b) Let $f:[1,3] \mapsto \mathbb{R}$ be a continuous function that is differentiable on $(1,3)$ with derivative $f^{\prime}(x)=(f(x))^{2}+4$ for all $x \in(1,3)$. Determine whether it is true or false that $f(3)-f(1)=5$. Justify your answer.
Ans:
- By Mean Value theorem, $5=f(3)-f(1)=f^{\prime}(c)(3-1)$, for some $c \in(1,3)$. [3]
- But we are given that $f^{\prime}(c)=(f(c))^{2}+4$, therefore $\frac{5}{2}=(f(c))^{2}+4 \Rightarrow$ $(f(c))^{2}=\frac{-3}{2}$, which is not possible. Hence the statement is false.
(c) Are there any value(s) of k for which the equation $x^{4}-4 x+k=0$ has two distinct roots in the interval $[0,1]$? Give reasons.
Ans:
- Consider $f(x)=x^{4}-4 x+k$. Note that $f^{\prime}(x)=4 x^{3}-4=4\left(x^{3}-1\right)<0$ in $(0,1)$.
- Therefore the function is strictly decreasing in the interval $[0,1]$, and hence there is no value of k for which the given equation has two distinct roots in $[0,1]$.

3. (a) Trace the curve $f(x)=\frac{2 x^{2}-3}{x+1}$ marking the local maxima/minima, intervals where f is increasing or decreasing, points of inflection and asymptotes if any. [10]
Ans:

- $f(x)=\frac{2 x^{2}-3}{x+1}=2 x-2-\frac{1}{x+1} . f(x)=0$ when $x= \pm \sqrt{\frac{3}{2}}$.
- $f^{\prime}(x)=2+\frac{1}{(x+1)^{2}}>0, \forall x \neq-1$.
- f is increasing in both $(-\infty,-1)$ and $(-1, \infty)$. There are no local maxima/local minima.
- $y=2 x-2$ is an asymptote as $f(x)-y \rightarrow 0$ as $x \rightarrow \pm \infty . x=-1$ is a horizontal asymptote.
- As $x \rightarrow \infty, f(x) \rightarrow \infty$ and as $x \rightarrow-\infty, f(x) \rightarrow-\infty$.

As $f(x)=2(-1+h)-2-\frac{1}{-1+h+1}, f(x) \rightarrow-\infty$ when $x \rightarrow(-1)^{+}$and $f(x) \rightarrow \infty$ as $x \rightarrow(-1)^{-}$.

- $f^{\prime \prime}(x)=\frac{-2}{(x+1)^{3}}>0$ when $x \in(-\infty,-1)$ and $f^{\prime \prime}(x)<0$, if $x \in(-1, \infty)$. Thus function is concave up in $(-\infty,-1)$ and is concave down in $(-1, \infty)$. [2]
- $x=-1$ is a point of inflection.
(b) Prove that the equation $x^{3}+3 x+1=0$ has exactly one real root. Take $x_{0}=0$ in the Newton's method and find x_{2} to estimate this root.
Ans:
- Let $f(x)=x^{3}+3 x+1$. Then f is a continuous function. As $x \rightarrow \infty$, $f(x) \rightarrow \infty$ and as $x \rightarrow-\infty, f(x) \rightarrow-\infty$.
- Therefore, by IVP, $f(x)=0$ for some $x \in \mathbb{R}$.
- Since $f^{\prime}(x)=3 x^{2}+3>0, f$ has exactly one real root.
- In Newton's method, $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}, n=1,2, \ldots$. Here $f^{\prime}(x)=3 x^{2}+3$. [3]
- Therefore, $x_{0}=0$, gives $x_{1}=0-1 / 3=-1 / 3 . x_{2}=-1 / 3-\frac{-1 / 27}{10 / 3}=$ $-29 / 90$.

4. (a) For what values of x, can we replace $\sin x$ by $x-\frac{x^{3}}{6}$ with an error of magnitude less than or equal to 5×10^{-4}. Give reasons for your answer.
Ans:

- By Taylor's theorem, $\sin x=x-\frac{x^{3}}{3!}+\cos c \frac{x^{5}}{5!}$ where $c \in(0, x)$.

Therefore, $\left|\sin x-\left(x-\frac{x^{3}}{6}\right)\right|=\left|\cos c \frac{x^{5}}{5!}\right| \leq\left|\frac{x^{5}}{5!}\right|$

- This is less than or equal to $\frac{5}{(10)^{4}}$ if $|x|^{5}<\frac{5 \times 5!}{(10)^{4}}$.
(b) For $x>-1, x \neq 0$ prove that $(1+x)^{\alpha}>1+\alpha x$, whenever $\alpha<0$ or $\alpha>1$. [10]
Ans:
- Consider the function $g(x)=(1+x)^{\alpha}-1-\alpha x$.

We need to show that $g(x)>0$ under the given conditions. $g^{\prime}(x)=$ $\alpha(1+x)^{\alpha-1}-\alpha, x \neq-1$

- Consider $g^{\prime \prime}(x)=\alpha(\alpha-1)(1+x)^{\alpha-2}$, which is always positive $\forall x>-1$, for the given $\alpha^{\prime} s$.
- Therefore, g^{\prime} is strictly increasing in $(-1, \infty)$.
- Therefore, if $x>0$, then $g^{\prime}(x)>g^{\prime}(0)=0$, and so $g(x)>g(0)=0$.
- For $-1<x<0, g^{\prime}(x)<g^{\prime}(0)=0$, and so g is strictly decreasing in $(-1,0)$, which in turn gives $g(x)>g(0)=0$.

