Department of Mathematics, Indian Institute of Technology, Kanpur MTH101A: Mid Semester Exam 1-17-9-2012

Maximum Marks- 70
7:30-9:30 a.m.

1. Answer all questions.

2. Please number the pages and indicate on a tabular column on the first page, the pages in which the respective questions have been answered.
(1) Determine whether the following sequences $\left(a_{n}\right)$ are convergent or divergent (Please provide proper justifications for your answers):
3. $a_{1}=0, a_{2}=3, a_{n}=\frac{2 a_{n-1}+a_{n-2}}{3}, \forall n>2$.

Solution: $\left|a_{n+1}-a_{n}\right|=\frac{1}{3}\left|a_{n}-a_{n-1}\right|$ and $0<\frac{1}{3}<1$. The sequence is Cauchy. [3] By the Cauchy criterion the sequence $\left(a_{n}\right)$ is convergent.
2. $a_{n}=\sqrt{\ln (n+1)}$.

Solution: We show that the sequence $\left(a_{n}\right)$ is not bounded.
Fix $n_{0} \in \mathbb{N}$ and let $N=e^{n_{0}^{2}}$
For any $n>N, a_{n}>a_{N}=\sqrt{\ln \left(e^{n_{0}^{2}}+1\right)}>n_{0}$.
The sequence is divergent since an unbounded sequence cannot be convergent.
3. Let b_{k} denote the number of prime numbers less than or equal to k. (For example, $b_{4}=2$ since the prime numbers less than or equal to 4 are 2 and 3.)
Let $a_{1}=2, a_{2}=3$ and $a_{n}=\sum_{k=3}^{n} \frac{1}{b_{k}} \forall n \geq 3$.
Solution: Since the number of primes less than or equal to k is atmost $k, b_{k}<k$, $\forall k>2$.
Hence $0<\frac{1}{k}<\frac{1}{b_{k}}, \forall k \geq 3$.
By the comparison test since $\sum \frac{1}{k}$ is divergent, so is $\sum \frac{1}{b_{k}}$.
Hence, $\left(a_{n}\right)$ is a divergent sequence.
(2) 1. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be continuous functions such that $f(a) \neq g(a)$ for some $a \in \mathbb{R}$. Show that there exists a $\delta>0$, such that $f(x) \neq g(x), \forall x$ such that $|x-a|<\delta$.

Solution: Let $h(x)=f(x)-g(x) . h$ is continuous on \mathbb{R} and $h(a) \neq 0$.

Choose $\epsilon=\left|\frac{h(a)}{2}\right|>0$.
Since, h is continuous at a, there exists a $\delta>0$ such that
$|h(x)-h(a)|<\epsilon$, whenever $|x-a|<\delta$.
$\Rightarrow|h(x)-h(a)|<\left|\frac{h(a)}{2}\right|$, whenever $|x-a|<\delta$.
$\Rightarrow|h(x)|>\left|\frac{h(a)}{2}\right|>0$, whenever $|x-a|<\delta$.
Hence $f(x) \neq g(x)$, whenever $|x-a|<\delta$.
2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous with $f(0)=-1$ and $f(1)=3$. Let $S=\{x \in[0,1] \mid f(x)=0\}$.
(a) Show that S is non empty.

Solution: Since f is continuous on $[0,1]$, by the Intermediate Value property for f, there exists a $c \in(0,1)$, such that $f(c)=0$.
$c \in S$ and hence $S \neq \emptyset$.
(b) Let α be the supremum of the set S. Show that $\alpha \in(0,1]$.

Solution: Since 1 is an upper bound for $S, \alpha \leq 1$.
Since $c \in S$ and $c>0, \alpha \geq c>0$. Hence $\alpha \in(0,1]$.
(c) Show that $f(\alpha)=0$.

Solution: Assume, if possible that $f(\alpha) \neq 0$. Since f is continuous at α, (by problem 2(1)) there exists a $\delta>0$ such that $f(x) \neq 0$ for all $|x-\alpha|<\delta$. [2] In other words, no element in $(\alpha-\delta, \alpha+\delta)$ belongs to S which contradicts that fact that α is the supremum of S. Hence, $f(\alpha)=0$.
(3) \quad. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a twice differentiable function which has a local maximum at $x=0$. Show that $f^{\prime \prime}(0) \leq 0$.

Solution: Since 0 is a point of local maxima for $f, f^{\prime}(0)=0$.
Further there exists an $\epsilon>0$, such that $f(x) \leq f(0), \forall|x|<\epsilon$.
For each $x \in(0, \epsilon)$, by the Mean Value Theorem, there exists $c_{x} \in(0, x)$, such that $f(x)-f(0)=f^{\prime}\left(c_{x}\right)(x-0) \leq 0$.
$\frac{f^{\prime}\left(c_{x}\right)-f^{\prime}(0)}{c_{x}-0}=\frac{f^{\prime}\left(c_{x}\right)}{c_{x}} \leq 0$.
$f^{\prime \prime}(0)=\lim _{x \rightarrow 0} \frac{f^{\prime}\left(c_{x}\right)}{c_{x}} \leq 0$.

Aliter:

0 is a local maximum $\Rightarrow f^{\prime}(0)=0$.

Hence there exists a $\delta>0$ such that
f is increasing in $(-\delta, 0)$ and f is decreasing in $(0, \delta)$.
Hence, $f^{\prime}(0)<0$ if $x>0$ and $f^{\prime}(0)>0$ if $x<0$.
$f^{\prime \prime}\left(0^{+}\right)=\lim _{h \rightarrow 0^{+}} \frac{f^{\prime}(h)-f^{\prime}(0)}{h}=\lim _{h \rightarrow 0^{+}} \frac{f^{\prime}(h)}{h} \leq 0$.
$f^{\prime \prime}\left(0^{-}\right)=\lim _{h \rightarrow 0^{-}} \frac{f^{\prime}(h)-f^{\prime}(0)}{h}=\lim _{h \rightarrow 0^{-}} \frac{f^{\prime}(h)}{h} \leq 0$.
Since $f^{\prime \prime}(0)$ exists, $f^{\prime \prime}(0)=f^{\prime \prime}\left(0^{+}\right)=f^{\prime \prime}\left(0^{-}\right)$.
2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a thrice differentiable function on $[-1,1]$ with $f(-1)=0$, $f(1)=1$ and $f^{\prime}(0)=0$. Using Taylor's Theorem prove that $f^{\prime \prime \prime}(c) \geq 3$ for some $c \in(-1,1)$.

Solution: By Taylor's Theorem
$f(1)=f(0)+f^{\prime}(0)+\frac{1}{2} f^{\prime \prime}(0)+\frac{1}{3!} f^{\prime \prime \prime}\left(c_{1}\right)$, for some $c_{1} \in(0,1)$.
$f(-1)=f(0)-f^{\prime}(0)+\frac{1}{2} f^{\prime \prime}(0)-\frac{1}{3!} f^{\prime \prime \prime}\left(c_{2}\right)$, for some $c_{2} \in(-1,0)$.
On subtracting, we get $f^{\prime \prime \prime}\left(c_{1}\right)+f^{\prime \prime \prime}\left(c_{2}\right)=6$, which implies atleast one of $f^{\prime \prime \prime}\left(c_{1}\right)$ or $f^{\prime \prime \prime}\left(c_{2}\right) \geq 3$.

1. Show that the equation $x^{13}+7 x^{3}-5=0$ has exactly one real root.

Solution: Let $f(x)=x^{13}+7 x^{3}-5$. Here, $f(x)<0 \forall x \leq 0, f(0)=-5$ and $f(1)=3$. By the intermediate value property, there exists $c \in(0,1)$, such that $f(c)=0$. So, f has atleast one real root.
If f has more than one real roots, (from above) they must all be positive. But, $f^{\prime}(x)=x^{2}\left(13 x^{10}+21\right) \neq 0$ unless $x=0$. Since $f^{\prime}(x)$ has no positive root, f has atmost one real root.
2. Use the Cauchy Condensation Test to determine the behaviour of the p-series $\sum_{n} \frac{1}{n^{p}}$ for all p.
Solution: Let $p \geq 0$. Then $\left(\frac{1}{n^{p}}\right)$ is a decreasing sequence of nonnegative terms. By the Cauchy Condensation test, $\sum_{n} \frac{1}{n^{p}}$ converges iff $\sum_{k} 2^{k} \frac{1}{2^{k p}}$ converges. [1] $\sum_{k} 2^{k} \frac{1}{2^{k p}}=\sum_{k} \frac{1}{2^{(p-1) k}}$. If $p>1,0<\frac{1}{2^{(p-1)}}=r<1$.
Since $\sum_{k} r^{p}$ is a geometric series, it is convergent. Hence $\sum_{n} \frac{1}{n^{p}}$ converges whenever $p>1$
When $p \leq 1$, the gemoetric series diverges.

If $p \leq 0$, the Cauchy Condensation test fails and the nth term test tells us that the series $\sum_{n} \frac{1}{n^{p}}$ is divergent.
3. Using the mean value theorem determine

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{(1+x)^{n}-1}{x} \tag{3+6+5}
\end{equation*}
$$

Solution: Choose the function $f: \mathbb{R} \rightarrow \mathbb{R}, f(y)=(1+y)^{n}$.
For $x>0, f$ is continuous on $[0, x]$ and differentiable on $(0, x)$.
By the Mean Value theorem, there exists a $c_{x} \in(0, x)$ such that
$\frac{f(x)-f(0)}{x-0}=\frac{(1+x)^{n}-1}{x}=f^{\prime}\left(c_{x}\right)$.
$f^{\prime}\left(c_{x}\right)=n\left(1+c_{x}\right)^{n-1}$.
Since $0<c_{x}<x$, as $x \rightarrow 0, c_{x} \rightarrow 0$.

1. Determine whether the series

$$
\begin{equation*}
1-\frac{1}{2}+\frac{1}{3}-\frac{1}{2^{2}}+\frac{1}{5}-\frac{1}{2^{3}}+\frac{1}{7}-\frac{1}{2^{4}} \ldots \tag{5}
\end{equation*}
$$

is convergent or divergent.

Solution:

Consider the above series as $\sum(-1)^{n} a_{n}$. Since $\left(\left|a_{n}\right|\right)$ is not a decreasing sequence, we cannot use the Leibniz test.
If $\sum a_{n}$, is convergent then the sequence of partial sums $\left(s_{n}\right)$ must be convergent and hence the subsequence ($s_{2 n}$) must also be convergent.
$s_{n}=\sum_{m=0}^{n / 2-1} \frac{1}{2 m+1}-\sum_{m=1}^{n / 2} \frac{1}{2^{m}}=x_{n}-y_{n}$, where n is even. Since $\frac{1}{2 i+1}<\frac{1}{2 i}$, by comparison test (x_{n}) diverges and hence $\left(x_{n}\right)$ is an unbounded sequence. $\sum_{i=0} \frac{1}{2^{i}}$ is a geometric series and converges to 2. $\left(y_{n}\right)$ is an increasing sequence and $y_{n}<2$ for all n.
For any $K \in \mathbb{R}$, there exists an $n_{0} \in \mathbb{N}$ such that $\forall n>n_{0}, x_{n}>K+2$.
This implies that $s_{n}=x_{n}-y_{n}>K+2-2=K$. Hence the sequence of partial sums is unbounded and so the series $\sum a_{n}$ diverges.
2. Sketch the graph of the function $f(x)=\frac{x^{2}}{x^{2}-1}$.

Indicate clearly with proper justifications
(a) domain of definition of f,
(b) the x and y intercepts if any,
(c) behaviour of f at $\pm \infty$ and asymptotes if any,
(d) intervals where f is increasing, decreasing and local extrema if any,
(e) regions where f is concave/convex and points of inflection.

$$
[6+8]
$$

Solution: As $f(-x)=f(x), f$ is even and it is sufficient to concentrate on $(0, \infty)$. f is defined on $\mathbb{R} \backslash\{-1,1\}$ and the only x and y intercepts are when $x=0$ and $y=0$.
$\frac{x^{2}}{x^{2}-1}=1+\frac{1}{x^{2}-1}$. Hence $\lim _{x \rightarrow \pm \infty} f(x)=1$. So, $y=1$ is a horizontal asymptote. [1]
$\lim _{x \rightarrow 1^{+}} f(x)=\infty$ and $\lim _{x \rightarrow 1^{-}} f(x)=-\infty, x=1$ and $x=-1$ are vertical asymptotes. [1]
$f^{\prime}(x)=\frac{-2 x}{\left(x^{2}-1\right)^{2}} . f^{\prime}(x)<0$ when $x>0$. Hence the function if decreasing on $(0,1)$ and $(1, \infty)$
The function is increasing on $(-\infty,-1)$ and $(-1,0)$.
f has a local maximum at $x=0$ and $f(0)=0$.
$f^{\prime \prime}(x)=\frac{2+6 x^{2}}{\left(1-x^{2}\right)^{3}} \cdot f^{\prime \prime}>0$ on $(1, \infty)$ and $f^{\prime \prime}<0$ on $(-1,1)$. Hence f is convex on $(1, \infty)$ and $(-\infty,-1)$ and concave on $(-1,1)$.
Graph

