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1. Answer all questions.

2. Please number the pages and indicate on a tabular column on the first page, the pages in which the respective

questions have been answered.

(1) Determine whether the following sequences (an) are convergent or divergent (Please
provide proper justifications for your answers):

1. a1 = 0, a2 = 3, an =
2an−1 + an−2

3
, ∀ n > 2.

Solution: |an+1− an| =
1

3
|an − an−1| and 0 <

1

3
< 1. The sequence is Cauchy. [3]

By the Cauchy criterion the sequence (an) is convergent. [2]

2. an =
√

ln(n+ 1).

Solution: We show that the sequence (an) is not bounded.

Fix n0 ∈ N and let N = en
2
0

For any n > N , an > aN =

√
ln(en

2
0 + 1) > n0. [3]

The sequence is divergent since an unbounded sequence
cannot be convergent. [1]

3. Let bk denote the number of prime numbers less than or equal to k. (For example,
b4 = 2 since the prime numbers less than or equal to 4 are 2 and 3.)

Let a1 = 2, a2 = 3 and an =
n∑

k=3

1

bk
∀ n ≥ 3. [5+4+5]

Solution: Since the number of primes less than or equal to k is atmost k, bk < k,
∀k > 2. [1]

Hence 0 <
1

k
<

1

bk
, ∀ k ≥ 3. [1]

By the comparison test since
∑ 1

k
is divergent, so is

∑ 1

bk
. [2]

Hence, (an) is a divergent sequence. [1]

(2) 1. Let f, g : R→ R be continuous functions such that f(a) 6= g(a) for some a ∈ R.
Show that there exists a
δ > 0, such that f(x) 6= g(x), ∀x such that |x− a| < δ. [5]

Solution: Let h(x) = f(x)− g(x). h is continuous on R and h(a) 6= 0. [1]



2

Choose ε = |h(a)

2
| > 0. [1]

Since, h is continuous at a, there exists a δ > 0 such that

|h(x)− h(a)| < ε, whenever |x− a| < δ.

⇒ |h(x)− h(a)| < |h(a)

2
|, whenever |x− a| < δ.

⇒ |h(x)| > |h(a)

2
| > 0, whenever |x− a| < δ. [2]

Hence f(x) 6= g(x), whenever |x− a| < δ. [1]

2. Let f : R→ R be continuous with f(0) = −1 and f(1) = 3. Let
S = {x ∈ [0, 1]|f(x) = 0}.

(a) Show that S is non empty.

Solution: Since f is continuous on [0, 1], by the Intermediate Value property
for f , there exists a c ∈ (0, 1), such that f(c) = 0.
c ∈ S and hence S 6= ∅. [2]

(b) Let α be the supremum of the set S. Show that α ∈ (0, 1].

Solution: Since 1 is an upper bound for S, α ≤ 1. [1]

Since c ∈ S and c > 0, α ≥ c > 0. Hence α ∈ (0, 1]. [2]

(c) Show that f(α) = 0. [2+3+4]

Solution: Assume, if possible that f(α) 6= 0. Since f is continuous at α, (by
problem 2(1)) there exists a δ > 0 such that f(x) 6= 0 for all |x− α| < δ. [2]

In other words, no element in (α − δ, α + δ) belongs to S which contradicts
that fact that α is the supremum of S. Hence, f(α) = 0. [2]

(3) 1. Let f : R → R be a twice differentiable function which has a local maximum at
x = 0. Show that f

′′
(0) ≤ 0.

Solution: Since 0 is a point of local maxima for f , f ′(0) = 0. [1]

Further there exists an ε > 0, such that f(x) ≤ f(0), ∀|x| < ε. [1]

For each x ∈ (0, ε), by the Mean Value Theorem, there exists cx ∈ (0, x), such
that f(x)− f(0) = f ′(cx)(x− 0) ≤ 0. [2]

f ′(cx)− f ′(0)

cx − 0
=
f ′(cx)

cx
≤ 0. [2]

f ′′(0) = lim
x→0

f ′(cx)

cx
≤ 0. [2]

Aliter:
0 is a local maximum ⇒ f ′(0) = 0. [1]
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Hence there exists a δ > 0 such that

f is increasing in (−δ, 0) and f is decreasing in (0, δ). [2]

Hence, f ′(0) < 0 if x > 0 and f ′(0) > 0 if x < 0. [1]

f ′′(0+) = lim
h→0+

f ′(h)− f ′(0)

h
= lim

h→0+

f ′(h)

h
≤ 0.

f ′′(0−) = lim
h→0−

f ′(h)− f ′(0)

h
= lim

h→0−

f ′(h)

h
≤ 0.

Since f ′′(0) exists, f ′′(0) = f ′′(0+) = f ′′(0−). [4]

2. Let f : R → R be a thrice differentiable function on [−1, 1] with f(−1) = 0,
f(1) = 1 and f

′
(0) = 0. Using Taylor’s Theorem prove that

f ′′′(c) ≥ 3 for some c ∈ (−1, 1). [8+6]

Solution: By Taylor’s Theorem

f(1) = f(0) + f
′
(0) + 1

2
f
′′
(0) + 1

3!
f ′′′(c1), for some c1 ∈ (0, 1). [2]

f(−1) = f(0)− f ′(0) + 1
2
f
′′
(0)− 1

3!
f ′′′(c2), for some c2 ∈ (−1, 0). [2]

On subtracting, we get f ′′′(c1) + f ′′′(c2) = 6, which implies atleast one of f ′′′(c1)
or f ′′′(c2) ≥ 3. [2]

(4) 1. Show that the equation x13 + 7x3 − 5 = 0 has exactly one real root.

Solution: Let f(x) = x13 + 7x3 − 5. Here, f(x) < 0 ∀ x ≤ 0, f(0) = −5 and
f(1) = 3. By the intermediate value property, there exists c ∈ (0, 1), such that
f(c) = 0. So, f has atleast one real root. [1]

If f has more than one real roots, (from above) they must all be positive. But,
f ′(x) = x2(13x10 + 21) 6= 0 unless x = 0. Since f ′(x) has no positive root, f has
atmost one real root. [2]

2. Use the Cauchy Condensation Test to determine the behaviour of the p-series∑
n

1

np
for all p.

Solution: Let p ≥ 0. Then (
1

np
) is a decreasing sequence of nonnegative terms.

By the Cauchy Condensation test,
∑
n

1

np
converges iff

∑
k

2k 1

2kp
converges. [1]

∑
k

2k 1

2kp
=

∑
k

1

2(p−1)k . If p > 1, 0 < 1
2(p−1) = r < 1. [1]

Since
∑
k

rp is a geometric series, it is convergent. Hence
∑
n

1

np
converges when-

ever p > 1 [2]

When p ≤ 1, the gemoetric series diverges. [2]
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If p ≤ 0, the Cauchy Condensation test fails and the nth term test tells us that

the series
∑
n

1

np
is divergent.

3. Using the mean value theorem determine

lim
x→0

(1 + x)n − 1

x
.

[3+6+5]

Solution: Choose the function f : R→ R, f(y) = (1 + y)n. [1]

For x > 0, f is continuous on [0, x] and differentiable on (0, x).

By the Mean Value theorem, there exists a cx ∈ (0, x) such that

f(x)− f(0)

x− 0
=

(1 + x)n − 1

x
= f ′(cx). [2]

f ′(cx) = n(1 + cx)n−1.

Since 0 < cx < x, as x→ 0, cx → 0.

Hence lim
x→0

(1 + x)n − 1

x
= lim

cx→0
n(1 + cx)n−1 = n [2]

(5) 1. Determine whether the series

1− 1

2
+

1

3
− 1

22
+

1

5
− 1

23
+

1

7
− 1

24
. . .

is convergent or divergent.

Solution:
Consider the above series as

∑
(−1)nan. Since (|an|) is not a decreasing sequence,

we cannot use the Leibniz test.

If
∑

an, is convergent then the sequence of partial sums (sn) must be convergent

and hence the subsequence (s2n) must also be convergent. [1]

sn =

n/2−1∑
m=0

1

2m+ 1
−

n/2∑
m=1

1

2m
= xn − yn, where n is even. Since

1

2i+ 1
<

1

2i
, by

comparison test (xn) diverges and hence (xn) is an unbounded sequence. [2]∑
i=0

1
2i

is a geometric series and converges to 2. (yn) is an increasing sequence and

yn < 2 for all n. [1]

For any K ∈ R, there exists an n0 ∈ N such that ∀ n > n0, xn > K + 2.

This implies that sn = xn − yn > K + 2− 2 = K. Hence the sequence of partial
sums is unbounded and so the series

∑
an diverges. [2]

2. Sketch the graph of the function f(x) =
x2

x2 − 1
.

Indicate clearly with proper justifications
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(a) domain of definition of f ,

(b) the x and y intercepts if any,

(c) behaviour of f at ±∞ and asymptotes if any,

(d) intervals where f is increasing, decreasing and local extrema if any,

(e) regions where f is concave/convex and points of inflection.

[6+8]

Solution: As f(−x) = f(x), f is even and it is sufficient to concentrate on (0,∞).

f is defined on R \ {−1, 1} and the only x and y intercepts are when x = 0 and
y = 0 . [1]

x2

x2 − 1
= 1 +

1

x2 − 1
. Hence lim

x→±∞
f(x) = 1. So, y = 1 is a horizontal asymptote.

[1]

lim
x→1+

f(x) =∞ and lim
x→1−

f(x) = −∞, x = 1 and x = −1 are vertical asymptotes.

[1]

f ′(x) =
−2x

(x2 − 1)2
. f

′
(x) < 0 when x > 0. Hence the function if decreasing on

(0, 1) and (1,∞) [1]

The function is increasing on (−∞,−1) and (−1, 0).

f has a local maximum at x = 0 and f(0) = 0. [1]

f ′′(x) =
2 + 6x2

(1− x2)3
. f ′′ > 0 on (1,∞) and f ′′ < 0 on (−1, 1). Hence f is convex

on (1,∞) and (−∞,−1) and concave on (−1, 1). [1]

Graph [2]
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