For $n \geq 1$, let $x_n = 1 + \frac{1}{3} + \frac{1}{5} + \cdots + \frac{1}{2n-1}$. Does the sequence (x_n) converge? Justify your answer. (Do not use statements of the problems appeared in the Assignments or Practice Problems for justifications). [5]

Solution:
For any $n \in \mathbb{N}$, $|x_{2n} - x_n| = \left|\frac{1}{2n+1} + \frac{1}{2n+3} + \cdots + \frac{1}{2n-1}\right|$. [2]
Hence $|x_{2n} - x_n| \geq \frac{n}{4n-1} \geq \frac{n}{3n+1} \geq \frac{1}{4} \cdot \frac{n}{n+1} \geq \frac{1}{8}$ for all $n \in \mathbb{N}$. [2]
Therefore $|x_{2n} - x_n| \to 0$ as $n \to \infty$.
Since (x_n) does not satisfy the Cauchy Criterion, it does not converge. [1]

OR

For any n, $x_n \geq \frac{1}{2}y_n$ where $y_n = 1 + \frac{1}{3} + \frac{1}{5} + \cdots + \frac{1}{n}$.
For every $n \in \mathbb{N}$, $|y_{2n} - y_n| = \left|\frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{2n}\right| \geq \frac{n}{2n} = \frac{1}{2}$. [2]
Therefore $|y_{2n} - y_n| \to 0$ as $n \to \infty$.
Since (y_n) does not satisfy the Cauchy Criterion, it does not converge. [1]
As (y_n) is increasing, it is not bounded. [1]
Therefore, (x_n) is not bounded and hence it does not converge. [1]

(2) Let $f : \mathbb{R} \to \mathbb{R}$ satisfy $f(x+y) = f(x) + f(y)$ for all $x, y \in \mathbb{R}$. If f is continuous at $x_0 = 1$, show that f is continuous at $y_0 = 2$. [5]

Solution: Note that $f(0) = f(0+0) = 2f(0) \Rightarrow f(0) = 0$ and $f(x+(-x)) = f(0) = 0 \Rightarrow f(-x) = -f(x)$.
Hence $f(x+y) = f(x) - f(y)$. [1]
Suppose $y_n \to y_0 = 2$. [1]
Then $y_n - 1 \to 1$. [1]
Since f is continuous at $x_0 = 1$, $f(y_n - 1) \to f(1)$ [1]
Hence $f(y_n) - f(1) \to f(1)$ and therefore $f(y_n) \to f(1) + f(1) = f(2)$. [1]
Hence f is continuous at $y_0 = 2$. [1]
(3) Let \(f : [0, 1] \rightarrow \mathbb{R} \) be continuous and \((x_n)\) be a sequence in \([0, 1]\). Suppose
\[
\lim_{n \to \infty} \frac{f(x_1) + f(x_2) + \cdots + f(x_n)}{n} = \alpha
\]
for some \(\alpha \in \mathbb{R} \). Show that there exists \(x_0 \in [0, 1] \) such that \(f(x_0) = \alpha \). [5]

Solution: Let \(m = \inf \{ f(x) : x \in [0, 1] \} \) and \(M = \sup \{ f(x) : x \in [0, 1] \} \).

Then \(m \leq \frac{1}{n} (f(x_1) + f(x_2) + \cdots + f(x_n)) \leq M \) for every \(n \). [2]

Hence \(m \leq \alpha \leq M \). [2]

By IVP, there exists \(x_0 \in [0, 1] \) such that \(f(x_0) = \alpha \). [1]