
MTH101A (2016), Tentative Marking Scheme - End sem. exam

1. (a) Let f(x, y, z) = xyz and S be x2 + y2 + z2 = 6. Using Lagrange multipliers

method, find the maximum and minimum values of f on S. [7]

Solution:

Lag. Eqns.: yz = 2λx, xz = 2λy, xy = 2λz, x2 + y2 + z2 = 6 [1]

Case I: λ = 0 ⇒ the candidates (±
√
6, 0, 0), (0,±

√
6, 0), (0, 0,±

√
6) [2]

Case II: λ ̸= 0 ⇒ 3xyz = 12λ [1]

Hence 2λx2 = 4λ which implies x = ±
√
2 [1]

Similarly y = ±
√
2 and z = ±

√
2.

The candidates are (±
√
2,±

√
2,±

√
2). [1]

The max value is 2
√
2 and min value is −2

√
2 [1]

(This one mark is not to be released if Case I is NOT considered)

(b) Evaluate the volume of the solid which is common to the cylinders x2+y2 = 4

and y2 + z2 = 4 using the method of double integrals. [5]

Solution:

V =
2∫

−2

√
4−y2∫

−
√

4−y2

2
√

4− y2dxdy [3]

=
2∫

−2

4(4− y2)dy [1]

= 128
3

[1]

(c) Let f : [1
2
, 3
2
] → R be differentiable. Show that there exist c1, c2 ∈ [1

2
, 3
2
] such

that f ′(c2) = c2f
′(c1). [5]

Solution:

By CMVT
f( 3

2
)−f( 1

2
)

3
2
− 1

2

= f ′(c1)
1

, c1 ∈ [1
2
, 3
2
] [2]

and
f( 3

2
)−f( 1

2
)

( 3
2
)2−( 1

2
)2

= f ′(c2)
2c2

, c2 ∈ [1
2
, 3
2
] [2]

Therefore f ′(c1)
2

= f ′(c2)
2c2

[1]

2. (a) Let the surface S be part of 2x+3y−z = 0 which lies inside the region bounded

by x = 1, x = 2, y = 0 and y = x. Evaluate
∫∫

S
dσ√
x2+y2

. [6]

Solution:

Let R be the projection of the given region and f(x, y) = 2x+ 3y.

Then
∫∫
S

dσ√
x2+y2

=
∫∫
R

√
1+f2

x+f2
ydxdy√

x2+y2
=

∫∫
R

√
14dxdy√
x2+y2

[2]

=
π/4∫
0

2 sec θ∫
sec θ

√
14
r
rdrdθ (See Figure 2(a)) [3]

=
√
14 log(1 +

√
2) [1]



(b) Let X0, U ∈ R2 where ∥U∥ = 1 and f : R2 → R be differentiable at X0. Prove

that the directional derivative DX0f(U) of f at X0 in the direction U exists

and DX0f(U) = ∇f(x0) · U . [5]

Solution:

Since f is differentiable at X0,
f(X0+H)−f(X0)−∇f(X0)·H

∥H∥ → 0 as H → 0 [1]

For H = tU, t ∈ R, ∥U∥ = 1 [1]

and t → 0, f(X0+tU)−f(X0)−∇f(X0)·tU
|t| → 0. [1]

As t → 0, f(X0+tU)−f(X0)−∇f(X0)·tU
t

→ 0. [1]

As t → 0, f(X0+tU)−f(X0)
t

→ ∇f(X0) · U. [1]

(c) Let an ≥ 0 and
∑∞

n=1(n
3a2n−1) converge. Verify whether

∑∞
n=1

an√
n
converges.

[6]

Solution:

Observe that n3a2n → 1 [2]

LCT with
∑

1
n2 : [1]

an/
√
n

1/n2 = n
3
2an → 1 [2]

The series converges. [1]

3. (a) Let the curve C be described by R(t) = ((sin 3t) cos t, (sin 3t) sin t), 0 ≤ t ≤ π
3
.

Sketch C. Evaluate
∮
C
ydx + xdy and

∮
C
−ydx + xdy where C is oriented

counterclockwise. [8]

Solution:

Note that C is r = sin 3θ, 0 ≤ θ ≤ π
3
. [1]

For the curve (see Figure 3(a)). [1]

Observe that
∮
C
ydx+ xdy =

∮
C
∇(xy) · dR = 0 by FTC of line integrals [2]

Observe that
∮
C
−ydx+ xdy = 2(Area enclosed by C). [2]

Area =1
2

π
3∫
0

sin2(3θ)dθ [1]

= π
12
. [1]

(b) Let D be the region that lies below the surface x2+y2+z2 = 4z and above z =√
3(x2 + y2). Using the spherical coordinates express

∫∫∫
D

√
x2 + y2 + z2dV

as three iterated single integrals. [4]

Solution:

The sphere is ρ2 = 4ρ cosϕ, i.e., ρ = 4 cosϕ. [1]

The cone is ρ cosϕ =
√
3r =

√
3ρ sinϕ, i.e., ϕ = π

6
. [1]

Therefore
∫∫∫

D

√
x2 + y2 + z2dV =

2π∫
0

π
6∫
0

4 cosϕ∫
0

ρρ2 sinϕdρdϕdθ. [2]



(c) Let (an) be in (0, 1) and 4an(1− an+1) > 1 for all n ≥ 1. Discuss the conver-

gence/divergence of the series
∑∞

n=1(a
2
n − 1). [5]

Solution:

If an → a0 for some a0, then 4a0(1− a0) ≥ 1. [2]

Since (2a0 − 1)2 ≤ 0, a0 =
1
2
. [2]

Since a2n 9 1,
∑

(a2n − 1) does NOT converge. [1]

4. (a) Consider the arc (x − 2)2 + y2 = 4, y ≥ 0. Using a theorem of Pappus, find

the surface area of the surface generated by revolving the arc about the line

y + 2x = 0. [6]

Solution:

Let the coordinate of the centroid of the arc be (2, y0). [1]

By Pappus theorem, 4π22 = 2πy02π [2]

Hence y0 =
4
π
. [1]

Distance of the line from the centroid is ρ = 2×2+y0√
1+22

[1]

By Pappus theorem, the required area is 2πρπ2. [1]

(b) Find the equation of the surface generated by the normals to the surface y +

2xz + xyz2 = 0 at all points on the z-axis. [5]

Solution:

Normal is (2z + yz2, 1 + xz2, 2x+ 2xyz). [1]

Normal at (0, 0, z0) is (2z0, 1, 0). [1]

If (x, y, z) lies on the surface then, x
2z0

= y
1
, z = z0. [2]

The equation of the surfaces is x = 2zy. [1]

(c) Let f : [0,∞) → [0,∞) be such that f ′′(x) > 0 for every x ≥ 0 and
∫∞
0

f(x)dx

converges. Show that
∫ n

0
f(x)dx ≥ nf(n

2
) and f(n

2
) → 0. [6]

Solution:

By Taylor’s theorem, for x ∈ [0, n], f(x) ≥ f(n
2
) + f ′(n

2
)(x− n

2
). [2]

Hence
n∫
0

f(x)dx ≥ nf(n
2
) + f ′(n

2
)n

2

2
− f ′(n

2
)n

2

2
. [2]

Since
∞∫
0

f(x)dx converges, there exists M > 0 such that f(n
2
) ≤ M

n
∀ n. [2]

5. (a) For p > 1, consider the curve C : |x|p + |y|p = 1. Evaluate∮
C
( −y
x2+y2

+ ex(sinx))dx + ( x
x2+y2

+ y(siny))dy where C is oriented counter-

clockwise. [6]

Solution:

Given integral is
∮
C

−y
x2+y2

dx+ x
x2+y2

dy +
∮
C
(ex(sinx))dx+ (y(siny))dy. [1]



By Green’s theorem,
∮
C
(ex(sinx))dx+ (y(siny))dy = 0. [1]

Observe that ∂
∂x
( x
x2+y2

) = ∂
∂y
( −y
x2+y2

). [1]

By Green’s theorem,
∮
C

−y
x2+y2

dx+ x
x2+y2

dy =
∮
Cr

−y
x2+y2

dx+ x
x2+y2

dy, [2]

where Cr is a circle of radius r and Cr lies inside the region enclosed by C.

Hence the required value is
2π∫
0

−r sin td(r cos t)+r cos td(r sin t)
r2

= 2π. [1]

(b) Consider the surface S : x2 + y2 + z2 = 8,−1 ≤ z ≤ 2. [10]

i. Find a vector field F such that curlF = (0, 0, 2
√
8).

ii. Find the unit (outward) normal to S.

iii. If C1 is x2 + y2 = 4, z = 2 then evaluate |
∮
C1

F · dR|.

iv. Evaluate
∫∫

S
2zdσ.

Solution:

(i) F (x, y, z) = (−y
√
8, x

√
8, 0). [1]

(ii) The normal n̂ = 1√
8
(x, y, z). [1]

(iii) Parametrization of C1 is (2 cos θ, 2 sin θ, 2), 0 ≤ θ ≤ 2π [1]

The value of the line integral is
2π∫
0

−2
√
8 sin θd(2 cos θ)+2

√
8 cos θd(2 sin θ)

= 8
√
8π [2]

(iv) Observe that
∫∫

S
2zdσ =

∫∫
S
curlF · n̂dσ. [1]

By Stoke’s theorem,
∫∫

S
curlF · n̂dσ = (

∮
C

−
∮
C1

)F · dR. [2]

where C : x2 + y2 = 7, z = −1.∮
C

F · dR = 14
√
8π. [1]

Hence
∫∫

S
2zdσ = 6

√
8π [1]

6. (a) Sketch the graph of f(x) = 3x2−2
x2−1

after finding the intervals of decreas-

ing/increasing, intervals of concavity/convexity, points of local maximum and

asymptotes. [5]

Solution:

f(x) = 3 + 1
x2−1

⇒ x = 1, x = −1 and y = 3 are the asymptotes. [1]

f ′(x) = −2x
(x2−1)2

⇒ f is ↑ on (−∞,−1), (−1, 0) and ↓ on (0, 1), (1,∞). [1]

f ′′(x) = 2(3x2+1)
(x2−1)3

⇒ convex on (−∞,−1), (1,∞) and concave on (−1, 1) [1]

x = 0 is a point of local maximum. [1]

For the graph (see Figure 6(a)). [1]



(b) Consider the surfaces [11]

S1 = {(x, y, x+ 100) : x2 + y2 ≤ 1
9
} and

S2 = {(x, y,−100) : x2 + y2 ≤ 1
9
}.

Let the surface S3 be the part of the cylinder

x2 + y2 = 1
9
that lies between the surfaces S1 and S2. Let D denote the region

enclosed by S1, S2 and S3. Let F (x, y, z) = ρ−3(x, y, z) for (x, y, z) ̸= 0 where

ρ =
√

x2 + y2 + z2.

i. Find the unit normals to the surfaces S1, S2 and S3.

ii. Find DivF .

iii. Evaluate∫∫
S1

(z−x)dσ

(
√
2)ρ3

+
∫∫
S2

−zdσ
ρ3

+
∫∫
S3

3(x2+y2)dσ
ρ3

.

Solution:

(i) Unit normal on S1 : n̂1 =
1√
2
(−1, 0, 1) or (−n̂1). [1]

Unit normal on S2 : n̂2 = (0, 0,−1) or (−n̂2). [1]

Unit normal on S3 : n̂3 = (3x, 3y, 0) or (−n̂3). [1]

(ii) ∂
∂x
(ρ) = x

ρ

∂
∂x
( x
ρ3
) = 1

ρ3
− 3x2

ρ5
[2]

divF = 3
ρ3

− 3ρ2

ρ5
= 0

(iii) The given integral I =
∫∫
S1

F · n̂1dσ +
∫∫
S2

F · n̂2dσ +
∫∫
S3

F · n̂3dσ. [2]

By divergence theorem I =
∫∫
S

F · n̂dσ [1]

where S : x2 + y2 + z2 = r2, r < 1
3
and n̂ = 1

r
(x, y, z). [1]

I = 4π. [2]


