MTH101A (2016), Tentative Marking Scheme - End sem. exam

1. (a) Let $f(x, y, z)=x y z$ and S be $x^{2}+y^{2}+z^{2}=6$. Using Lagrange multipliers method, find the maximum and minimum values of f on S.

Solution:

Lag. Eqns.: $y z=2 \lambda x, x z=2 \lambda y, x y=2 \lambda z, x^{2}+y^{2}+z^{2}=6$
Case $I: \lambda=0 \Rightarrow$ the candidates $(\pm \sqrt{6}, 0,0),(0, \pm \sqrt{6}, 0),(0,0, \pm \sqrt{6})$
Case II: $\lambda \neq 0 \Rightarrow 3 x y z=12 \lambda$
Hence $2 \lambda x^{2}=4 \lambda$ which implies $x= \pm \sqrt{2}$
Similarly $y= \pm \sqrt{2}$ and $z= \pm \sqrt{2}$.
The candidates are $(\pm \sqrt{2}, \pm \sqrt{2}, \pm \sqrt{2})$.
The max value is $2 \sqrt{2}$ and min value is $-2 \sqrt{2}$
(This one mark is not to be released if Case I is NOT considered)
(b) Evaluate the volume of the solid which is common to the cylinders $x^{2}+y^{2}=4$ and $y^{2}+z^{2}=4$ using the method of double integrals.

Solution:

$$
\begin{align*}
V & =\int_{-2}^{2} \int_{-\sqrt{4-y^{2}}}^{\sqrt{4-y^{2}}} 2 \sqrt{4-y^{2}} d x d y \tag{3}\\
& =\int_{-2}^{2} 4\left(4-y^{2}\right) d y \tag{1}\\
& =\frac{128}{3} \tag{1}
\end{align*}
$$

(c) Let $f:\left[\frac{1}{2}, \frac{3}{2}\right] \rightarrow \mathbb{R}$ be differentiable. Show that there exist $c_{1}, c_{2} \in\left[\frac{1}{2}, \frac{3}{2}\right]$ such that $f^{\prime}\left(c_{2}\right)=c_{2} f^{\prime}\left(c_{1}\right)$.

Solution:

By CMVT $\frac{f\left(\frac{3}{2}\right)-f\left(\frac{1}{2}\right)}{\frac{3}{2}-\frac{1}{2}}=\frac{f^{\prime}\left(c_{1}\right)}{1}, c_{1} \in\left[\frac{1}{2}, \frac{3}{2}\right]$
and $\frac{f\left(\frac{3}{2}\right)-f\left(\frac{1}{2}\right)}{\left(\frac{3}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}}=\frac{f^{\prime}\left(c_{2}\right)}{2 c_{2}}, c_{2} \in\left[\frac{1}{2}, \frac{3}{2}\right]$
Therefore $\frac{f^{\prime}\left(c_{1}\right)}{2}=\frac{f^{\prime}\left(c_{2}\right)}{2 c_{2}}$
2. (a) Let the surface S be part of $2 x+3 y-z=0$ which lies inside the region bounded by $x=1, x=2, y=0$ and $y=x$. Evaluate $\iint_{S} \frac{d \sigma}{\sqrt{x^{2}+y^{2}}}$.

Solution:

Let R be the projection of the given region and $f(x, y)=2 x+3 y$.
Then $\iint_{S} \frac{d \sigma}{\sqrt{x^{2}+y^{2}}}=\iint_{R} \frac{\sqrt{1+f_{x}^{2}+f_{y}^{2}} d x d y}{\sqrt{x^{2}+y^{2}}}=\iint_{R} \frac{\sqrt{14} d x d y}{\sqrt{x^{2}+y^{2}}}$

$$
\begin{align*}
& =\int_{0}^{\pi / 4} \int_{\sec \theta}^{2 \sec \theta} \frac{\sqrt{14}}{r} r d r d \theta \quad \text { (See Figure 2(a)) } \tag{3}\\
& =\sqrt{14} \log (1+\sqrt{2})
\end{align*}
$$

(b) Let $X_{0}, U \in \mathbb{R}^{2}$ where $\|U\|=1$ and $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be differentiable at X_{0}. Prove that the directional derivative $D_{X_{0}} f(U)$ of f at X_{0} in the direction U exists and $D_{X_{0}} f(U)=\nabla f\left(x_{0}\right) \cdot U$.

Solution:

Since f is differentiable at $X_{0}, \frac{f\left(X_{0}+H\right)-f\left(X_{0}\right)-\nabla f\left(X_{0}\right) \cdot H}{\|H\|} \rightarrow 0$ as $H \rightarrow 0$
For $H=t U, t \in \mathbb{R},\|U\|=1$
and $t \rightarrow 0, \frac{f\left(X_{0}+t U\right)-f\left(X_{0}\right)-\nabla f\left(X_{0}\right) \cdot t U}{|t|} \rightarrow 0$.
As $t \rightarrow 0, \frac{f\left(X_{0}+t U\right)-f\left(X_{0}\right)-\nabla f\left(X_{0}\right) \cdot t U}{t} \rightarrow 0$.
As $t \rightarrow 0, \frac{f\left(X_{0}+t U\right)-f\left(X_{0}\right)}{t} \rightarrow \nabla f\left(X_{0}\right) \cdot U$.
(c) Let $a_{n} \geq 0$ and $\sum_{n=1}^{\infty}\left(n^{3} a_{n}^{2}-1\right)$ converge. Verify whether $\sum_{n=1}^{\infty} \frac{a_{n}}{\sqrt{n}}$ converges. [6]

Solution:

Observe that $n^{3} a_{n}^{2} \rightarrow 1$
LCT with $\sum \frac{1}{n^{2}}$:
$\frac{a_{n} / \sqrt{n}}{1 / n^{2}}=n^{\frac{3}{2}} a_{n} \rightarrow 1$
The series converges.
3. (a) Let the curve C be described by $R(t)=((\sin 3 t) \cos t,(\sin 3 t) \sin t), 0 \leq t \leq \frac{\pi}{3}$. Sketch C. Evaluate $\oint_{C} y d x+x d y$ and $\oint_{C}-y d x+x d y$ where C is oriented counterclockwise.

Solution:

Note that C is $r=\sin 3 \theta, 0 \leq \theta \leq \frac{\pi}{3}$.
For the curve (see Figure 3(a)).
Observe that $\oint_{C} y d x+x d y=\oint_{C} \nabla(x y) \cdot d R=0$ by FTC of line integrals [2]
Observe that $\oint_{C}-y d x+x d y=2$ (Area enclosed by C).

$$
\begin{align*}
\text { Area } & =\frac{1}{2} \int_{0}^{\frac{\pi}{3}} \sin ^{2}(3 \theta) d \theta \tag{1}\\
& =\frac{\pi}{12} . \tag{1}
\end{align*}
$$

(b) Let D be the region that lies below the surface $x^{2}+y^{2}+z^{2}=4 z$ and above $z=$ $\sqrt{3\left(x^{2}+y^{2}\right)}$. Using the spherical coordinates express $\iiint_{D} \sqrt{x^{2}+y^{2}+z^{2}} d V$ as three iterated single integrals.

Solution:

The sphere is $\rho^{2}=4 \rho \cos \phi$, i.e., $\rho=4 \cos \phi$.
The cone is $\rho \cos \phi=\sqrt{3} r=\sqrt{3} \rho \sin \phi$, i.e., $\phi=\frac{\pi}{6}$.
Therefore $\iiint_{D} \sqrt{x^{2}+y^{2}+z^{2}} d V=\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{6}} \int_{0}^{4 \cos \phi} \rho \rho^{2} \sin \phi d \rho d \phi d \theta$.
(c) Let $\left(a_{n}\right)$ be in $(0,1)$ and $4 a_{n}\left(1-a_{n+1}\right)>1$ for all $n \geq 1$. Discuss the convergence/divergence of the series $\sum_{n=1}^{\infty}\left(a_{n}^{2}-1\right)$.

Solution:

If $a_{n} \rightarrow a_{0}$ for some a_{0}, then $4 a_{0}\left(1-a_{0}\right) \geq 1$.
Since $\left(2 a_{0}-1\right)^{2} \leq 0, a_{0}=\frac{1}{2}$.
Since $a_{n}^{2} \nrightarrow 1, \sum\left(a_{n}^{2}-1\right)$ does NOT converge.
4. (a) Consider the arc $(x-2)^{2}+y^{2}=4, y \geq 0$. Using a theorem of Pappus, find the surface area of the surface generated by revolving the arc about the line $y+2 x=0$.

Solution:

Let the coordinate of the centroid of the arc be $\left(2, y_{0}\right)$.
By Pappus theorem, $4 \pi 2^{2}=2 \pi y_{0} 2 \pi$
Hence $y_{0}=\frac{4}{\pi}$.
Distance of the line from the centroid is $\rho=\frac{2 \times 2+y_{0}}{\sqrt{1+2^{2}}}$
By Pappus theorem, the required area is $2 \pi \rho \pi 2$.
(b) Find the equation of the surface generated by the normals to the surface $y+$ $2 x z+x y z^{2}=0$ at all points on the z-axis.

Solution:

Normal is $\left(2 z+y z^{2}, 1+x z^{2}, 2 x+2 x y z\right)$.
Normal at $\left(0,0, z_{0}\right)$ is $\left(2 z_{0}, 1,0\right)$.
If (x, y, z) lies on the surface then, $\frac{x}{2 z_{0}}=\frac{y}{1}, z=z_{0}$.
The equation of the surfaces is $x=2 z y$.
(c) Let $f:[0, \infty) \rightarrow[0, \infty)$ be such that $f^{\prime \prime}(x)>0$ for every $x \geq 0$ and $\int_{0}^{\infty} f(x) d x$ converges. Show that $\int_{0}^{n} f(x) d x \geq n f\left(\frac{n}{2}\right)$ and $f\left(\frac{n}{2}\right) \rightarrow 0$.

Solution:

By Taylor's theorem, for $x \in[0, n], f(x) \geq f\left(\frac{n}{2}\right)+f^{\prime}\left(\frac{n}{2}\right)\left(x-\frac{n}{2}\right)$.
Hence $\int_{0}^{n} f(x) d x \geq n f\left(\frac{n}{2}\right)+f^{\prime}\left(\frac{n}{2}\right) \frac{n^{2}}{2}-f^{\prime}\left(\frac{n}{2}\right) \frac{n^{2}}{2}$.
Since $\int_{0}^{\infty} f(x) d x$ converges, there exists $M>0$ such that $f\left(\frac{n}{2}\right) \leq \frac{M}{n} \forall n$.
5. (a) For $p>1$, consider the curve $C:|x|^{p}+|y|^{p}=1$. Evaluate
$\oint_{C}\left(\frac{-y}{x^{2}+y^{2}}+e^{x}(\sin x)\right) d x+\left(\frac{x}{x^{2}+y^{2}}+y(\sin y)\right) d y$ where C is oriented counterclockwise.

Solution:

Given integral is $\oint_{C} \frac{-y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y+\oint_{C}\left(e^{x}(\sin x)\right) d x+(y(\sin y)) d y$.

By Green's theorem, $\oint_{C}\left(e^{x}(\sin x)\right) d x+(y(\sin y)) d y=0$.
Observe that $\frac{\partial}{\partial x}\left(\frac{x}{x^{2}+y^{2}}\right)=\frac{\partial}{\partial y}\left(\frac{-y}{x^{2}+y^{2}}\right)$.
By Green's theorem, $\oint_{C} \frac{-y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y=\oint_{C_{r}} \frac{-y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y$, where C_{r} is a circle of radius r and C_{r} lies inside the region enclosed by C.
Hence the required value is $\int_{0}^{2 \pi} \frac{-r \sin t d(r \cos t)+r \cos t d(r \sin t)}{r^{2}}=2 \pi$.
(b) Consider the surface $S: x^{2}+y^{2}+z^{2}=8,-1 \leq z \leq 2$.
i. Find a vector field F such that curl $F=(0,0,2 \sqrt{8})$.
ii. Find the unit (outward) normal to S.
iii. If C_{1} is $x^{2}+y^{2}=4, z=2$ then evaluate $\left|\oint_{C_{1}} F \cdot d R\right|$.
iv. Evaluate $\iint_{S} 2 z d \sigma$.

Solution:

(i) $F(x, y, z)=(-y \sqrt{8}, x \sqrt{8}, 0)$.
(ii) The normal $\hat{n}=\frac{1}{\sqrt{8}}(x, y, z)$.
(iii) Parametrization of C_{1} is $(2 \cos \theta, 2 \sin \theta, 2), 0 \leq \theta \leq 2 \pi$

The value of the line integral is $\int_{0}^{2 \pi}-2 \sqrt{8} \sin \theta d(2 \cos \theta)+2 \sqrt{8} \cos \theta d(2 \sin \theta)$

$$
\begin{equation*}
=8 \sqrt{8} \pi \tag{2}
\end{equation*}
$$

(iv) Observe that $\iint_{S} 2 z d \sigma=\iint_{S} c u r l F \cdot \hat{n} d \sigma$.

By Stoke's theorem, $\iint_{S} c u r l F \cdot \widehat{n} d \sigma=\left(\oint_{C}-\oint_{C_{1}}\right) F \cdot d R$.
where $C: x^{2}+y^{2}=7, z=-1$.
$\oint_{C} F \cdot d R=14 \sqrt{8} \pi$.
Hence $\iint_{S} 2 z d \sigma=6 \sqrt{8} \pi$
6. (a) Sketch the graph of $f(x)=\frac{3 x^{2}-2}{x^{2}-1}$ after finding the intervals of decreasing/increasing, intervals of concavity/convexity, points of local maximum and asymptotes.

Solution:

$f(x)=3+\frac{1}{x^{2}-1} \Rightarrow x=1, x=-1$ and $y=3$ are the asymptotes.
$f^{\prime}(x)=\frac{-2 x}{\left(x^{2}-1\right)^{2}} \Rightarrow f$ is \uparrow on $(-\infty,-1),(-1,0)$ and \downarrow on $(0,1),(1, \infty)$.
$f^{\prime \prime}(x)=\frac{2\left(3 x^{2}+1\right)}{\left(x^{2}-1\right)^{3}} \Rightarrow$ convex on $(-\infty,-1),(1, \infty)$ and concave on $(-1,1) \quad[1]$
$x=0$ is a point of local maximum.
For the graph (see Figure 6(a)).
$S_{1}=\left\{(x, y, x+100): x^{2}+y^{2} \leq \frac{1}{9}\right\}$ and
$S_{2}=\left\{(x, y,-100): x^{2}+y^{2} \leq \frac{1}{9}\right\}$.
Let the surface S_{3} be the part of the cylinder
$x^{2}+y^{2}=\frac{1}{9}$ that lies between the surfaces S_{1} and S_{2}. Let D denote the region enclosed by S_{1}, S_{2} and S_{3}. Let $F(x, y, z)=\rho^{-3}(x, y, z)$ for $(x, y, z) \neq 0$ where $\rho=\sqrt{x^{2}+y^{2}+z^{2}}$.
i. Find the unit normals to the surfaces S_{1}, S_{2} and S_{3}.
ii. Find DivF.
iii. Evaluate

$$
\iint_{S_{1}} \frac{(z-x) d \sigma}{(\sqrt{2}) \rho^{3}}+\iint_{S_{2}} \frac{-z d \sigma}{\rho^{3}}+\iint_{S_{3}} \frac{3\left(x^{2}+y^{2}\right) d \sigma}{\rho^{3}}
$$

Solution:

(i) Unit normal on $S_{1}: \widehat{n_{1}}=\frac{1}{\sqrt{2}}(-1,0,1) \quad$ or $\left(-\widehat{n_{1}}\right)$.

Unit normal on $S_{2}: \widehat{n_{2}}=(0,0,-1) \quad$ or $\left(-\widehat{n_{2}}\right)$.
Unit normal on $S_{3}: \widehat{n_{3}}=(3 x, 3 y, 0) \quad$ or $\left(-\widehat{n_{3}}\right)$.
(ii) $\frac{\partial}{\partial x}(\rho)=\frac{x}{\rho}$
$\frac{\partial}{\partial x}\left(\frac{x}{\rho^{3}}\right)=\frac{1}{\rho^{3}}-\frac{3 x^{2}}{\rho^{5}}$
$\operatorname{divF}=\frac{3}{\rho^{3}}-\frac{3 \rho^{2}}{\rho^{5}}=0$
(iii) The given integral $I=\iint_{S_{1}} F \cdot \widehat{n_{1}} d \sigma+\iint_{S_{2}} F \cdot \widehat{n_{2}} d \sigma+\iint_{S_{3}} F \cdot \widehat{n_{3}} d \sigma$.
where $S: x^{2}+y^{2}+z^{2}=r^{2}, r<\frac{1}{3}$ and $\widehat{n}=\frac{1}{r}(x, y, z)$.
$I=4 \pi$.

