END SEMESTER EXAMINATION

MTH 101A, 19TH DECEMBER 2020

Tentative Marking Scheme

Time: 3 hrs (16:00-19:00hrs)
Full Marks: 80
(1) (a) Let $x_{n}=\left(\frac{a^{n}+b^{n}+c^{n}}{3}\right)^{\frac{1}{n}}+\frac{n^{a}}{(1+b+c)^{n}}$ where $1<a<b<c$. Show that the sequence $\left(x_{n}\right)$ converges and find its limit.

Solution: Note that $\left(\frac{c^{n}}{3}\right)^{\frac{1}{n}} \leq\left(\frac{a^{n}+b^{n}+c^{n}}{3}\right)^{\frac{1}{n}} \leq\left(\frac{3 c^{n}}{3}\right)^{\frac{1}{n}}$.
By Sandwich Theorem, $\left(\frac{a^{n}+b^{n}+c^{n}}{3}\right)^{\frac{1}{n}} \rightarrow c$.
Let $y_{n}=\frac{n^{a}}{(1+b+c)^{n}}$. Then $\frac{y_{n+1}}{y_{n}} \rightarrow \frac{1}{1+b+c}<1$.
Hence $y_{n} \rightarrow 0$.
Therefore $x_{n} \rightarrow c$.
(b) Let $\left(a_{n}\right)$ be a sequence defined by

$$
a_{1}=2, a_{2}=4 \text { and } a_{n+2}=\frac{1}{4} a_{n}+\frac{3}{4} a_{n+1} \text { for } n \geq 1
$$

Does the series $\sum_{n=1}^{\infty} a_{n}$ converge? Justify your answer.
Solution: Observe that $2 \leq a_{n}$ for all n.
Hence $a_{n} \nrightarrow 0$.
Therefore the series does not converge.
(c) Let $f:[0,2] \rightarrow \mathbb{R}$ be a differentiable function such that $f\left(1+\frac{1}{n}\right)=0$ for all $n \in \mathbb{N}$. Show that $f^{\prime}(1)=0$.

Solution: Since $f\left(1+\frac{1}{n}\right) \rightarrow f(1), f(1)=0$.
Note that $f^{\prime}(1)=\lim _{n \rightarrow \infty} \frac{f\left(1+\frac{1}{n}\right)-f(1)}{1 / n}=0$.
(2) (a) Determine the values of x for which the series $\sum_{n=1}^{\infty} \frac{(x-1)^{2 n}}{n^{4} 3^{n}}$ converges.

Solution: By the root test, the series converges for $|x-1|<\sqrt{3}$.
The series converges for $|x-1|=\sqrt{3}$.
The series converges for $|x-1| \leq \sqrt{3}$.
(b) Test the convergence/divergence of the improper integral $\int_{1}^{\infty}\left(-t^{3}\right) e^{-2 t} d t$.

Solution: Note that $\lim _{t \rightarrow \infty} \frac{t^{3} e^{-2 t}}{1 / t^{2}}=0$.
By the LCT $\int_{1}^{\infty} t^{3} e^{-2 t} d t$ converges.
Hence the given improper integral converges.
(c) Sketch the graphs of the following polar equations:
(i) $r^{2}=-5 \cos \theta$
(ii) $r^{2}=-2 \sin 2 \theta$.
(3) (a) The region bounded by the curves $y=\sqrt{1-x^{2}}, y=\sqrt{4-x^{2}}$ and the x -axis is revolved around the axis $y=-1$. Find the volume generated.

Solution: Let $(0, \bar{y})$ be the centroid of the given region.
Then by Pappus theorem $\frac{4}{3} \pi\left(2^{3}-1\right)=2 \pi \bar{y} \pi \frac{4-1}{2}$.
Hence $\bar{y}=\frac{28}{9 \pi}$.
The required volume, by Pappus theorem, is $V=2 \pi(\bar{y}+1) \pi \frac{3}{2}$.
(b) Find the curvature $\kappa(t)$ of the curve defined by the parametric equations:
$x(t)=\int_{0}^{t} \cos \frac{u^{2}}{2} d u, \quad y(t)=\int_{0}^{t} \sin \frac{u^{2}}{2} d u, \quad t>0$.
Solution: $v(t)=\left(\cos \frac{t^{2}}{2}, \sin \frac{t^{2}}{2}\right)$
$a(t)=\left(-t \sin \frac{t^{2}}{2}, t \cos \frac{t^{2}}{2}\right)$
$\kappa(t)=\frac{\|a(t) \times v(t)\|}{\|v(t)\|^{3}}=t$
(c) Let $f(x, y)=x^{2}+y^{2}+x+y$. What is the directional derivative of f at $(0,0)$ in the direction $\left(\frac{3}{5}, \frac{4}{5}\right)$?.
Solution: $D_{(0,0)} f\left(\frac{3}{5}, \frac{4}{5}\right)=\nabla f(0,0) \cdot\left(\frac{3}{5}, \frac{4}{5}\right)=\left(\frac{3}{5}, \frac{4}{5}\right)$.
(4) (a) Find the area of the region bounded between the circles $x^{2}+y^{2}=2 x$ and $x^{2}+y^{2}=4 x$ using double integral.

Solution: Let R denote the region bounded by the circles.
Then the required area $A=\iint_{R} d A=\int_{-\pi / 2}^{\pi / 2} \int_{2 \cos \theta}^{4 \cos \theta} r d r d \theta$
$=6 \int_{-\pi / 2}^{\pi / 2} \cos ^{2} d \theta$
$=6\left[\frac{1}{4} \sin 2 x+\frac{x}{2}\right]_{-\pi / 2}^{\pi / 2}=3 \pi$
No marks will be awarded if double integral is not used.
(b) Determine the equation of the cone with vertex $(0,-a, 0)$ generated by a line passing through the curve $z^{2}=2 y, x=h$ where a and h are positive constants. [5]

Solution: Any point on the curve is of the form $\left(h, y_{0}, z_{0}\right)$.
The equation of a line passing through $\left(h, y_{0}, z_{0}\right)$ and $(0,-a, 0)$ is $\frac{x-0}{h-0}=\frac{y+a}{y_{0}+a}=\frac{z-0}{z_{0}}$.
We get $z_{0}=\frac{h z}{x}$ and $y_{0}=\frac{h(y+a)}{x}-a$.
Since $\left(h, y_{0}, z_{0}\right)$ lies on the curve, the equation of the cone is $h^{2} z^{2}=2 x[h(y+a)-a x]$.
(c) Let $f(x, y)=\sin (x)-\cos (y)$. Find the derivative of f at $(0,0)$.

Solution: The derivative of f at $(0,0)=\left(f_{x}, f_{y}\right)(0,0)=(1,0)$
(5) (a) Let $f(x, y)=y^{4}-4 y^{2} x+x^{2}$. Show that $(0,0)$ is a saddle point.

Solution: Note that $f_{x}(0,0)=0$ and $f_{y}(0,0)=0$
For any $\epsilon>0, f(0, \epsilon)>0$
and $f\left(2 \epsilon^{2}, \epsilon\right)<0$.
(b) Let $f(x, y)=x^{5}-3 x y^{2}$. Find the points of local maxima, local minima and saddle points.

Solution: $f_{x}=f_{y}=0$ implies that $(0,0)$ is the only critical point.
Note that $\left(f_{x x} f_{y y}-f_{x y}^{2}\right)(0,0)=0$ and hence the second derivative fails.
Note that $f(x, 0)=x^{5}$.
Hence for $x>0, f(x, 0)>0$ and $f(-x, 0)<0$ and therefore $(0,0)$ is a saddle point.
(c) Let C be the line segment joining $(0,0,0)$ and $(1,1,1)$. Let $f(x, y, z)=\left(x^{2}, y^{2}, z^{2}\right)$ for all $(x, y, z) \in C$. Compute the line integral $\oint_{C} f \cdot d R$
Solution: Note that $C=R(t)=(t, t, t), t \in[0,1]$.
Therefore $\int_{C} f \cdot d R=\int_{0}^{1} t^{2} d t+t^{2} d t+t^{2} d t$
(6) (a) Evaluate $\int_{0}^{1} \int_{0}^{1} \int_{\sqrt{x}}^{1} e^{y^{3}} d y d x d z$.

Solution: Note that $\int_{0}^{1} \int_{\sqrt{x}}^{1} e^{y^{3}} d y d x=\int_{0}^{1} \int_{0}^{y^{2}} e^{y^{3}} d x d y$

$$
\begin{equation*}
=\frac{1}{3} \int_{0}^{1} e^{u} d u=\frac{1}{3}(e-1) . \tag{2}
\end{equation*}
$$

Hence $\int_{0}^{1} \int_{0}^{1} \int_{\sqrt{x}}^{1} e^{y^{3}} d y d x d z=\frac{1}{3}(e-1)$.
(b) A round hole of radius $\sqrt{3} \mathrm{cms}$ is bored through the center of a solid sphere of radius 2 cms . Evaluate the volume cut out using double integral. Leave your answer with the integral expressions (i.e., there is no need to evaluate the integrals).
Solution: $V=\iint_{R} 2 \sqrt{4-x^{2}-y^{2}} d A$ where $R=\left\{(x, y): x^{2}+y^{2} \leq 3\right\}$.

$$
\begin{align*}
& =\int_{-\sqrt{3}}^{\sqrt{3}} \int_{-\sqrt{3-x^{2}}}^{\sqrt{3-x^{2}}} 2 \sqrt{4-x^{2}-y^{2}} d y d x \tag{2}\\
& =\int_{0}^{2 \pi} \int_{0}^{\sqrt{3}} 2 \sqrt{4-r^{2}} r d r d \theta
\end{align*}
$$

OR
(c) Consider the surface $z=\sqrt{1-x^{2}-y^{2}}$ where $x^{2}+y^{2} \leq 1$. Find the unit outward normal to the surface at the point $\left(\frac{1}{\sqrt{2}}, \frac{1}{2}, \frac{1}{2}\right)$.
Solution: The unit outward normal is the same, i.e., $\left(\frac{1}{\sqrt{2}}, \frac{1}{2}, \frac{1}{2}\right)$.
(7) (a) Let $f(x, y)=\left(x y^{2}+\sin ^{2} x\right) i+\left(x^{2} y+2 x+\cos ^{2} y\right) j$. Find the line integral $\oint_{C} f \cdot d R$ where C is the triangle in the plane with the vertices $(0,0),(0,4)$ and $(1,1)$ and C is oriented counterclockwise.

Solution: Let K denote the region bounded by the given triangle.
By Green's theorem $\oint_{C} f \cdot d R=\iint_{K} 2 d A$.

$$
\begin{equation*}
=2(\text { Area of the triangle })=4 \tag{2}
\end{equation*}
$$

(b) Let C_{1} be the curve of intersection of the plane $y+z=2$ and the cylinder $x^{2}+y^{2}=1$. Let C_{2} be the curve of intersection of the plane $y+z=4$ and the cylinder $x^{2}+y^{2}=4$. Suppose C_{1} and C_{2} are oriented counterclockwise when viewed from above. Let F be a vector field with $\operatorname{curl} F=(1,0,1)$. Show that $\oint_{C_{1}} F \cdot d R=4 \oint_{C_{2}} F \cdot d R$.
Solution: If the surface S is defined by $z=f(x, y)$ then by the Stokes theorem $\oint_{C} F \cdot d R=\iint_{S}(\operatorname{curl} F) \cdot \widehat{n} d \sigma=\iint_{K}(\operatorname{curlF}) \cdot \frac{-f_{x} \hat{i}-f_{y} \hat{j}+\hat{k}}{\sqrt{f_{x}^{2}+f_{y}^{2}+1}} \sqrt{f_{x}^{2}+f_{y}^{2}+1} d x d y \cdot[2]$ where K is the projection of the surface S on the $x y$-plane
Here the surfaces are portions from $z=2-y$ and $z=4-y$.
Hence $\oint_{C_{1}} F \cdot d R=\iint_{x^{2}+y^{2} \leq 1}(1,0,1) \cdot(0,1,1) d x d y=\pi$.

$$
\begin{equation*}
\oint_{C_{2}} F \cdot d R=\iint_{x^{2}+y^{2} \leq 4}(1,0,1) \cdot(0,1,1) d x d y=4 \pi . \tag{2}
\end{equation*}
$$

