MTH101AA (2020), Tentative Marking Scheme - End sem. exam

1. (a) Show that $\frac{x^{3}}{3}=2 \sin x-x \cos x$ cannot have 4 distinct real roots.

Solution: Let $f(x)=\frac{x^{3}}{3}-2 \sin x+x \cos x$.
Suppose f has four zeros.
Then $f^{\prime}(x)=x^{2}-x \sin x-\cos x$ has at least three zeros.
So $f^{\prime \prime}(x)=x(2-\cos x)$ has at least two zeros.
Note that $f^{\prime \prime}$ has only one zero which is a contradiction.
(b) Let $a_{n}>0$ and $\sum_{n=1}^{\infty} a_{n}$ converges. Show that $\sum_{n=1}^{\infty}\left(\frac{a_{n}}{n}\right)^{\frac{1}{2}+\frac{1}{5}}$ converges.

Solution: Observe that $\left(\frac{a_{n}}{n}\right)^{\frac{1}{2}+\frac{1}{5}}=\frac{\sqrt{a_{n}^{\frac{14}{n 0}}}}{\sqrt{n^{\frac{14}{10}}}} \leq \frac{1}{2}\left(a_{n}^{\frac{14}{10}}+\frac{1}{n^{\frac{14}{10}}}\right)$.
Since $a_{n} \rightarrow 0, a_{n}^{\frac{14}{10}} \leq a_{n},\left(\frac{a_{n}}{n}\right)^{\frac{1}{2}+\frac{1}{5}} \leq \frac{1}{2}\left(a_{n}+\frac{1}{n^{14}}\right)$.
(Or, $\sum a_{n}^{\frac{14}{10}}$ converges by LCT with $\sum a_{n}$ as $a_{n} \rightarrow 0$).
By comparison test the series converges.
OR
$\left(\frac{a_{n}}{n}\right)^{\frac{1}{2}+\frac{1}{5}}=\frac{\sqrt{a_{n}} a_{n}^{\frac{1}{5}}}{\sqrt{n^{\frac{14}{10}}}} \leq \frac{1}{2}\left(a_{n}+\frac{1}{n^{\frac{14}{10}}}\right) a_{n}^{\frac{1}{5}} \leq \frac{1}{2}\left(a_{n}+\frac{1}{n^{14}}\right)$ as $a_{n} \rightarrow 0$.
(c) Let $x_{1}=0, x_{2}=1$ and $x_{n+2}=\frac{1}{3} x_{n}+\frac{2}{3} x_{n+1}$ for $n \geq 1$. Show that the sequence $\left(\sqrt{x_{n}}-\frac{1}{2}\right)$ converges but the series $\sum_{n=1}^{\infty}\left(\sqrt{x_{n}}-\frac{1}{2}\right)$ does not converge. [6]
Solution: Note that $\left|x_{n+2}-x_{n+1}\right|=\frac{1}{3}\left|x_{n}-x_{n+1}\right|$.
By Cauchy Criterion $\left(x_{N}\right)$ converges and hence $\left(\sqrt{x_{n}}-\frac{1}{2}\right)$ converges.
Observe that $x_{n+2}+\frac{1}{3} x_{n+1}=\frac{1}{3} x_{n}+x_{n+1}$.
If $x_{n} \rightarrow \ell$, then $\ell=\frac{3}{4}$
Since $\left(\sqrt{x_{n}}-\frac{1}{2}\right) \nrightarrow 0, \sum_{n=1}^{\infty}\left(\sqrt{x_{n}}-\frac{1}{2}\right)$ does not converge.
2. (a) Determine all the values of x for which $\sum_{n=1}^{\infty} \frac{(-1)^{n} n \sqrt{n}(x-1)^{n}}{n^{3}+1}$ converges.

Solution: If for a fixed $x, a_{n}=\frac{(-1)^{n} n \sqrt{n}(x-1)^{n}}{n^{3}+1}$, then $\left|\frac{a_{n+1}}{a_{n}}\right| \rightarrow|x-1|$. $\quad[2]$
Hence the power series converges for $|x-1|<1$.
When $x=0$, the series converges by LCT with $\sum \frac{1}{n^{\frac{3}{2}}}$
When $x=2$, the series converges because the series converges absolutely. [1]
(b) Let $f:[-1,1] \rightarrow \mathbb{R}$ be a twice differentiable function such that $\int_{0}^{1 / n} f(t) d t=0$
for every $n \in \mathbb{N}$. Show that $f^{\prime \prime}(0)=0$.
Solution: Let $F(x)=\int_{0}^{x} f(t) d t$.
Then there exists $c_{n} \in\left(0, \frac{1}{n}\right)$ s.t. $F\left(\frac{1}{n}\right)-F(0)=f\left(c_{n}\right) \frac{1}{n} \Rightarrow f\left(c_{n}\right)=0$
By continuity of $f, f\left(c_{n}\right) \rightarrow f(0)$ and hence $f(0)=0$.

By differentiability of $f, f^{\prime}(0)=\lim _{c_{n} \rightarrow 0} \frac{f\left(c_{n}\right)-f(0)}{c_{n}}=0$
By Rolle's theorem, there exists $d_{n} \in\left(0, c_{n}\right)$ s.t. $f^{\prime}\left(d_{n}\right)=0$ for every n.
Since f is twice differentiable, $f^{\prime \prime}(0)=\lim _{d_{n} \rightarrow 0} \frac{f^{\prime}\left(d_{n}\right)-f^{\prime}(0)}{d_{n}}=0$
(c) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}n! & \text { if } n \leq x<n+\frac{1}{n^{n}} \text { for every } n \in \mathbb{N} \\ 0 \quad & \text { otherwise }\end{cases}
$$

(i) Does $\int_{0}^{\infty} f(x) d x$ converge?
(ii) Does $f(x) \rightarrow 0$ as $x \rightarrow \infty$?

Justify your answer.
Solution: Note that, since $f(x) \geq 0$,

$$
\begin{align*}
\int_{0}^{\infty} f(x) d x & =\sum_{n=1}^{\infty} \int_{n}^{n+1} f(x) d x \tag{1}\\
& =\sum_{n=1}^{\infty} \int_{n}^{n+\frac{1}{n^{n}}} f(x) d x \tag{1}\\
& =\sum_{n=1}^{\infty} n!\frac{1}{n^{n}} \tag{1}
\end{align*}
$$

Let $a_{n}=n!\frac{1}{n^{n}}$, then $\frac{a_{n+1}}{a_{n}} \rightarrow \frac{1}{e}$
Hence by Ratio Test the series converges.
Hence the improper integral converges.
Since $f(n)=n!, f(x) \nrightarrow 0$ as $x \rightarrow \infty$.
3. (a) Let C be the curve defined by $R(t)=(3 \cos t, t, 3 \sin t), t \geq 0$.
i. Determine the curvature of C.
ii. Find the position on the curve after traveling through a distance of $\pi \sqrt{10}$ units along the curve from $(3,0,0)$.
Solution: $v(t)=(-3 \sin t, 1,3 \cos t)$ and $a(t)=(-3 \cos t, 0,-3 \sin t) . \quad[1]$
Hence $a(t) \times v(t)=3 \sin t i+9 j-3 \cos t k$. [1]
Therefore, $\kappa(t)=\frac{\|a(t) \times v(t)\|}{\|v(t)\|^{3}}=\frac{3}{10}$.
Note that $S(t)=\int_{0}^{t} \sqrt{10} d u=\sqrt{10} t$.
Since $\sqrt{10} t=\sqrt{10} \pi$, the position is $(-3, \pi, 0)$.
(b) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $f(x, y)=\left\{\begin{array}{ll}\frac{x y^{2}+y^{9}}{x^{2}+y^{8}} & i f(x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{array}\right.$.
i. Determine the directions in which the directional derivatives of f exist at $(0,0)$.
ii. Determine whether f is differentiable at $(0,0)$.

Solution: i. Let $(u, v) \in \mathbb{R}^{2}$ be such that $\|(u, v)\|=1$. Then

$$
\begin{align*}
\lim _{t \rightarrow 0} \frac{f(t u, t v)-f(0,0)}{t} & =\lim _{t \rightarrow 0} \frac{t u t^{2} v^{2}+t^{9} v^{9}}{t\left(t^{2} u^{2}+t^{8} v^{8}\right)} \tag{1}\\
& =\lim _{t \rightarrow 0} \frac{u v^{2}+t^{6} v^{9}}{u^{2}+t^{6} v^{8}} \tag{1}\\
& = \begin{cases}v & \text { if } u=0 \\
\frac{v^{2}}{u} & \text { if } u \neq 0\end{cases} \tag{1}
\end{align*}
$$

ii. Note that f is not contnuous at $(0,0)$ as $\lim _{x \rightarrow 0} f\left(x^{4}, x\right)=\lim _{x \rightarrow 0} \frac{x^{6}+x^{9}}{x^{8}+x^{8}} \neq 0$. [2] Since f is not continuous at $(0,0)$, it not differentiable at $(0,0)$.
(c) Let S be the surface defined by $z^{2}=x^{3}+y^{2}$. Let $P=(a, b, c) \in S$ where $a \neq 0$. Show that the tangent plane to the surface at P does not pass through the origin.
Solution: A normal at P is $\left(3 a^{2}, 2 b,-2 c\right)$.
The equation of the tangent plane to S at P is
$3 a^{2}(x-a)+2 b(y-b)-2 c(z-c)=0$
i.e., $3 a^{2} x+2 b y-2 c z-3 a^{3}-2 b^{2}+2 c^{2}=0$.

Since $c^{2}=a^{3}+b^{2}$, the equation becomes $3 a^{2} x+2 b y-2 c z=a^{3}$.
Since $a \neq 0$, the plane does not pass through the origin.
4. (a) Let R be the triangular region bounded by the lines joining the points $(0,0),(6,0)$ and $(0,4)$. Using a theorem of Pappus, find the coordinates of the centroid of this region.
Solution: Let the coordinates of the centroid be (\bar{x}, \bar{y}).
Revolve R about the y-axis:
By Pappus theorem $V=2 \pi \bar{x} A=2 \pi \bar{x} 12=48 \pi$.
Hence $\bar{x}=2$.
Revolve R about the x -axis:
By Pappus theorem $V=2 \pi \bar{y} 12=32 \pi$.
Hence $\bar{y}=\frac{4}{3}$.
(b) Find the area of the surface $z=2 x y$ inside the cylinder $x^{2}+y^{2}=2$.

Solution: Let $f(x, y)=2 x y$. Then $f_{x}=2 y$ and $f_{y}=2 x$.
The required area $A=\iint_{x^{2}+y^{2} \leq 2} \sqrt{1+4\left(y^{2}+x^{2}\right)} d x d y$
By polar co-ordinates, $A=\int_{0}^{2 \pi} \int_{0}^{\sqrt{2}} \sqrt{1+4 r^{2}} r d r d \theta$.
The value of $A=\frac{13 \pi}{3}$
(c) Let C be the intersection of the cylinder $x^{2}+y^{2}=1$ with the plane $x+2 y+2 z=$ 3 which is oriented counterclockwise when viewed from the origin. Let F be a
vector field with curlF $=\widehat{i}+2 \widehat{j}-\alpha \widehat{k}$ for some $\alpha \in \mathbb{R}$. Suppose $\oint_{C} F \cdot d R=\frac{-3 \pi}{2}$. Evaluate α.
Solution: By Stokes Theorem $\oint_{C} F \cdot d R=\iint_{S} \operatorname{curlF} \cdot \widehat{n} d \sigma$.
Note that $\widehat{n}= \pm \frac{i+2 j+2 k}{3}$ and in this case $\widehat{n}=\frac{-i-2 j-2 k}{3}$.
Hence $\operatorname{curlF} \cdot \widehat{n}=\frac{2 \alpha-5}{3}$.
Now $\iint_{S} \frac{2 \alpha-5}{3} d \sigma=\iint_{x^{2}+y^{2} \leq 1} \frac{2 \alpha-3}{3} \sqrt{1+f_{x}^{2}+f_{y}^{2}} d x d y$
where $f(x, y)=\frac{3}{2}-y-\frac{x}{2}$.
Hence $\iint_{S} \frac{2 \alpha-5}{3} d \sigma=\iint_{x^{2}+y^{2} \leq 1} \frac{2 \alpha-3}{3} \frac{3}{2} d x d y=\frac{2 \alpha-5}{2} \pi$.
Therefore $\alpha=1$.
5. (a) Let $\int_{0}^{1} e^{-x^{2}} d x=A$. Show that $\int_{0}^{1} \int_{0}^{x} e^{-t^{2}} d t d x=A+\frac{1}{2}\left(\frac{1}{e}-1\right)$.

Solution: Note that

$$
\begin{align*}
\int_{0}^{1} \int_{0}^{x} e^{-t^{2}} d t d x & =\int_{0}^{1} \int_{t}^{1} e^{-t^{2}} d x d t \tag{3}\\
& =A-\int_{0}^{1} e^{-t^{2}} t d t \tag{1}\\
& =A-\frac{1}{2} \int_{0}^{1} e^{-t} d t \tag{1}\\
& =A+\frac{1}{2}\left(\frac{1}{e}-1\right)
\end{align*}
$$

(b) Let S_{1} be the surface (of the upper hemisphere) $x^{2}+y^{2}+z^{2}=1$ with $z>0$. Let $S_{2}=\left\{(x, y, z): x^{2}+y^{2} \leq 1, z=0\right\}$, the circular disk of radius 1 centered at $(0,0,0)$ in the plane $z=0$. Evaluate
$\iint_{S_{1}}\left\{\left(z^{2} \sin ^{2} z\right) x+y^{2}+\left(e^{x} \sin x\right) z\right\} d \sigma-\iint_{S_{2}}\left\{\left(e^{x} \sin x\right)\right\} d \sigma$.
Solution: Let $F(x, y, z)=\left(z^{2} \sin ^{2} z\right) \widehat{i}+y \widehat{j}+\left(e^{x} \sin x\right) \widehat{k}$.
The given surface integral $\Upsilon=\iint_{S_{1}} F \cdot \widehat{n_{1}} d \sigma+\iint_{S_{2}} F \cdot \widehat{n_{2}} d \sigma$
where $\widehat{n_{1}}$ and $\widehat{n_{2}}$ are the outward normals to S_{1} and S_{2} respectively.
By Divergence theorem $\Upsilon=\iiint_{D} d i v F d V$
where D is the solid upper hemisphere of radius 1 centered at $(0,0,0)$.
Since $\operatorname{div} F=1, \Upsilon=\frac{2 \pi}{3}$
(c) Let $f:[0,1] \rightarrow(0,1)$ be continuous. Show that the equation $2 x-\int_{0}^{x} f(t) d t=1$ has exactly one solution in $[0,1]$.
Solution: Let $F(x)=2 x-\int_{0}^{x} f(t) d t-1$.
Then $F^{\prime}(x)=2-f(x) \neq 0$ on $[0,1]$ as $f(x) \in(0,1)$.
By Rolle's Theorem $F(x)=0$ can have at most one real root.
Note that $F(0)=-1$ and $F(1)=1-\int_{0}^{1} f(t) d t \geq 0$ as $f(x) \in(0,1)$.
By IVP, $F(x)=0$ has a solution in $[0,1]$.
6. (a) Let D be the region bounded by the lines $x+y=3, x+y=6, x-y=1$ and $x-y=3$. Evaluate $\iint_{D}(x+y)^{3} e^{2(x-y)} d x d y$.
Solution: Let $u=x+y$ and $v=x-y$. Then $x=\frac{u+v}{2}$ and $y=\frac{u-v}{2}$.
Then $|J(u, v)|=\frac{1}{2}$

$$
\begin{align*}
\iint_{D}(x+y)^{3} e^{2(x-y)} d x d y & =\frac{1}{2} \int_{1}^{3} \int_{3}^{6} u^{3} e^{2 v} d u d v \tag{2}\\
& =\frac{1215}{8} \int_{1}^{3} e^{2 v} d v \tag{1}\\
& =\frac{1215}{16}\left(e^{6}-e^{2}\right)
\end{align*}
$$

(b) Let R be the triangle region bounded by the lines joining the points $(0,0),(2,0)$ and $(2,1)$. Let $f(x, y)=2 y^{2}-4 y+x^{2}-4 x+1$. Find the points of maximum and minimum of f on R.
Solution: In the interior of R :
$f_{x}=0 \Rightarrow 2 x-4=0 \Rightarrow x=2$ and $f_{y}=0 \Rightarrow 4 y-4=0 \Rightarrow y=1$.
There is no critical point in the interior of R.
Along the line joining $(0,0)$ and $(2,0): f(x, 0)=x^{2}-4 x+1=g(x)$.
$g^{\prime}(x)=0 \Rightarrow x=2$.
Along the line joining $(2,0)$ and $(2,1): f(2, y)=2 y^{2}-4 y-3=h(y)$.
$h^{\prime}(y)=0 \Rightarrow y=1$.
Along the line joining $(0,0)$ and $(2,1): f\left(x, \frac{x}{2}\right)=\frac{3}{2} x^{2}-6 x+1=k(x)$.
$k^{\prime}(x)=0 \Rightarrow x=2$.
Therefore maximum and minimum can occur only at $(0,0),(2,0)$ and $(2,1)$.
Note that $f(0,0)=1, f(2,1)=-5$ and $f(2,0)=-3$.
Hence point of maximum is $(0,0)$ and point of minimum is $(2,1)$.
(c) Evaluate $\oint_{C} 2 x y z d x+x^{2} z d y+x^{2} y d z$ where C is the parametrized curve
$R(t)=\cos t \widehat{i}+\frac{t}{2 \pi} \widehat{j}+\sin t \widehat{k}, 0 \leq t \leq \frac{\pi}{2}$.
Solution: Observe that
$\nabla \phi=\left(2 x y z, x^{2} z, x^{2} y\right)$ where $\phi(x, y, z)=x^{2} y z$.
So, $\oint_{C} 2 x y z d x+x^{2} z d y+x^{2} y d z=\oint_{C} \nabla \phi \cdot d R=\phi\left(R\left(\frac{\pi}{2}\right)\right)-\phi(R(0))$.
Note that $R(0)=(1,0,0)$ and $R\left(\frac{\pi}{2}\right)=\left(0, \frac{1}{4}, 1\right)$.
Therefore, $\oint_{C} 2 x y z d x+x^{2} z d y+x^{2} y d z=0$.

