Department of Mathematics, Indian Institute of Technology, Kanpur MTH101A: Quiz 2 A- 31-10-2014

Maximum Marks- 15
5:15-5:35 p.m.

Name:
Roll No:
Section:
(1) A particle moves in space according to $R(t)=(\cos t, \sin t, \cos 2 t)$. Find the tangential and normal components of the acceleration at $t=\frac{\pi}{4}$. Further, find the curvature at $t=\frac{\pi}{4}$.
Solution: We observe that the velocity vector $v(t)=(-\sin t, \cos t,-2 \sin 2 t)$ and the acceleration vector $a(t)=(-\cos t,-\sin t,-4 \cos 2 t)$
At $t=\pi / 4, v=\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}},-2\right)$ and $a=\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}, 0\right)$
The speed $\frac{d s}{d t}=\sqrt{5}$.
Since $a(t)=a_{T} T(t)+a_{N} N(t)$, we observe that since $a . v=0, a_{T}=0$.
Thus $a_{N}=|a|=1$
The curvature $\kappa\left(\frac{\pi}{4}\right)=a_{N} /\left(\frac{d s}{d t}\right)^{2}=\frac{1}{5}$
(2) 1. The position of a fly flying in a room at time t is given by $R(t)=(\cos t, \sin t, t)$. The temperature in the room is given by $f(x, y, z)=x y z$. What is the rate of change of the temperature experienced by the fly at time t.

Solution: Let the temperature be written as $f(x, y)=x y z$. The rate of change of temperature experienced by the fly at any time t will be $\frac{d}{d t}(f(R(t))$.
By the Chain Rule $\frac{d}{d t}\left(f(R(t))=\nabla f(R(t)) \cdot R^{\prime}(t) . \nabla f=(y z, x z, x y)\right.$ and $\nabla f(R(t)) \cdot R^{\prime}(t)=(t(\sin t), t(\cos t), \cos t \sin t)$.

$$
\begin{align*}
& R^{\prime}(t)=(-\sin t, \cos t, 1) \tag{2}\\
& \frac{d}{d t}\left(f(R(t))=-t \sin ^{2} t+t \cos ^{2} t+\cos t \sin t\right. \tag{2}
\end{align*}
$$

2. Find the equation of the tangent plane to the surface $z=x \sin (x+y)$ at $(-1,1,0)$. [4]

Solution: Let $f(x, y)=x \sin (x+y)$.
Then $f_{x}=\sin (x+y)+x \cos (x+y)$ and $f_{y}=x \cos (x+y)$
Equation of the tangent plane at $(-1,1,0)$ is
$z-f(-1,1)=f_{x}(-1,1)(x+1)+f_{y}(-1,1)(y-1)$.
Equation of the tangent plane is : $z=-x-y$

