1 (a) Let \(x_1 = 1 \) and \(x_{n+1} = \frac{1}{2 + x_n} \) for \(n \in \mathbb{N} \). Show that \((x_n) \) satisfies Cauchy criterion. Find the limit of \((x_n) \). [6]

Solution. Note that

\[
|x_{n+2} - x_{n+1}| = \frac{1}{(2 + x_{n+1})(2 + x_n)} |x_n - x_{n+1}| < \frac{1}{4} |x_{n+1} - x_n|.
\]

Therefore \((x_n) \) satisfies the contractive condition with \(\alpha = 1/4 \), and hence it satisfies the Cauchy criterion. [3]

If \(x_n \to l \) then \(l = \frac{1}{2 + l} \), which gives \(l^2 + 2l - 1 = 0 \). Hence \((l + 1)^2 = 2 \), that is \(l + 1 = \pm \sqrt{2} \) or \(l = 1 \pm \sqrt{2} \). [2]

Since \(x_n > 0 \) for all \(n \), \(l = -1 + \sqrt{2} \). [1]

(b) Suppose the sequence \((\cos nx) \) is convergent for some \(x \in \mathbb{R} \). Show that \(x = 2k\pi \) for some integer \(k \). [6]

Solution. Suppose that \(a_n := \cos nx \to l \). Since

\[
\cos(n + 1)x + \cos(n - 1)x = 2 \cos nx \cos x,
\]

by taking limit, we get \(2l = 2l \cos x \). Thus \(l = 0 \) or \(\cos x = 1 \). [3]

Since \(\cos 2nx = 2 \cos^2 nx - 1 \), by taking limit, we get \(l = 2l^2 - 1 \). Hence \(l \neq 0 \). Hence \(\cos x = 1 \), that is, \(x = 2k\pi \) for some \(k \). [3]

Note: Give full marks if students use some other trigonometric identities to get the conclusion.
Let \(p(x) : \mathbb{R} \to \mathbb{R} \) be a polynomial of odd degree. Show that \(p(x) \) is an onto function. \([3+3=6]\)

Solution. Suppose \(p(x) = a_0 + a_1 x + \cdots + a_n x^{2n+1} \) and let \(\lambda \in \mathbb{R} \).

If \(a_n > 0 \) then \(p(x) \to \infty \) as \(x \to \infty \) and \(p(x) \to -\infty \) as \(x \to -\infty \).

If \(a_n < 0 \) then \(p(x) \to -\infty \) as \(x \to \infty \) and \(p(x) \to \infty \) as \(x \to -\infty \).

Thus there exists \(x_1, x_2 \) such that \(p(x_1) \leq \lambda \leq p(x_2) \). By IVP, there exists \(x_3 \) such that \(p(x_3) = \lambda \). \([3]\)

Alternative Solution. By IVP, every odd degree polynomial has a real root. Applying this to \(p(x) - \lambda \) for \(\lambda \in \mathbb{R} \), we get \(x_0 \) such that \(p(x_0) = \lambda \). \([3]\)

ii Show that there is no continuous function which maps \([0, 1]\) onto \((0, 1)\).

Solution. Suppose \(f \) is continuous such \(f([0, 1]) = (0, 1) \). In particular, \(1 \notin f([0, 1]) \). Note that \(\sup_{x \in [0, 1]} f(x) = \sup(0, 1) = 1 \). Since \(f \) is continuous, \(1 = \sup_{x \in [0, 1]} f(x) = f(x_0) \) for some \(x_0 \in [0, 1] \), which is not possible by our assumption. \([3]\)

Alternative Solution. If \(f \) is continuous then \(f([0, 1]) = [\inf f(x), \sup f(x)] \).

But \(\inf_{x \in [0, 1]} f(x) = 0 \) and \(\sup_{x \in [0, 1]} f(x) = 1 \). Thus we obtain \(f([0, 1]) = [0, 1] \), which is a contradiction. \([3]\)

(b) Let \(p(x) = a + bx + cx^2 \) be a quadratic polynomial. Find all values of \(a, b, c \in \mathbb{R} \) for which the function \(p(|x|) \) is differentiable at 0. \([6]\)

Solution. Note that \([3]\)

\[
\lim_{h \to 0} \frac{p(|h|) - p(0)}{h} = \lim_{h \to 0} \frac{a + b|h| + c|h|^2 - a}{h} = b \lim_{h \to 0} \frac{|h|}{h}.
\]

If \(b = 0 \) then clearly the derivative exists at 0. If \(b \neq 0 \) then by choosing paths \(h > 0 \) and \(h < 0 \), one can see that \(\lim_{h \to 0} \frac{p(|h|) - p(0)}{h} \) takes values \(b \) and \(-b\) respectively, so derivative does not exist. \([3]\)

Thus \(p(|x|) \) is differentiable at 0 for \(b = 0 \) and all values \(a, c \).
3 (a) A cylindrical box is to be made. The volume \(V \) of the box should be 250\(\pi \) cm. Find the height and radius of the box that minimizes the amount of material to be used. Recall: The volume \(V \) and surface area \(A \) are given by \(V = \pi r^2 h \) and \(A = 2\pi r^2 + 2\pi rh \) respectively. [6]

Solution. The volume is given by \(V = \pi r^2 h = 250\pi \). Thus \(h = \frac{V}{\pi r^2} = \frac{250}{r^2} \). The surface area is given by \(A = 2\pi r^2 + 2\pi rh \), where \(h \) is height and \(r \) is the radius of the can. This gives \(A = 2\pi r^2 + \frac{500}{r} \pi \). [3]

Note that \(\frac{dA}{dr} = 4\pi r - \frac{500}{r^2} \pi \) is negative if \(r < 5 \) and positive if \(r > 5 \). Thus \(A \) has minimum when \(r = 5 \). It follows that \(h = 10 \). [3]

(b) Find intervals of concavity/convexity and points of local minima/maxima of \(f(x) = \frac{x^2}{x^2 - 1} \) for \(x \neq 1 \). [6]

Solution. Note that \(f(x) = 1 + \frac{1}{x^2 - 1} \). Thus \(f'(x) = -\frac{2x}{(x^2 - 1)^2} \) and \(f''(x) = \frac{2(3x^2 + 1)}{(x^2 - 1)^3} \). [1]

Fact: If \(f''(x) > 0 \) (resp. \(f''(x) < 0 \)) for all \(x \in (a, b) \) then \(f \) is convex (resp. concave). Note that \(f'' > 0 \) on \((-\infty, -1) \) and \((1, \infty) \). Thus \(f \) is convex on \((-\infty, -1) \) and \((1, \infty) \). Note that \(f'' < 0 \) on \((-1, 1) \). Thus \(f \) is concave on \((-1, 1) \). [3]

Note that \(f' > 0 \) on \((-\infty, -1) \) and \((-1, 0) \). Hence \(f \) is strictly increasing on \((-\infty, -1) \) and \((-1, 0) \). Note that \(f' < 0 \) on \((0, 1) \) and \((1, \infty) \). Hence \(f \) is strictly decreasing on \((0, 1) \) and \((1, \infty) \). This shows that the point of local maximum is 0. [2]
4. (a) Compute \(\lim_{t \to 0} \left(\frac{1}{e^t-1} - \frac{1}{t} \right) \) and \(\lim_{t \to 1} \frac{\sqrt{t+3} - 2t}{\log t} \). [3+3=6]

Solution. \(* \lim_{t \to 0} \left(\frac{1}{e^t-1} - \frac{1}{t} \right) = \lim_{t \to 0} \frac{t-e^t}{t(e^t-1)} = \frac{0}{0} \) form. By L'Hospital's rule,

\[
\lim_{t \to 0} \left(\frac{1}{e^t-1} - \frac{1}{t} \right) = \lim_{t \to 0} \frac{-e^t}{te^t + e^t - 1} = \lim_{t \to 0} \frac{-e^t}{te^t + 2e^t} = -\frac{1}{2}.
\]

\[3\]

\(* \lim_{t \to 1} \frac{\sqrt{t+3} - 2t}{\log t} = \frac{0}{0} \) form. By L'Hospital's rule,

\[
\lim_{t \to 1} \frac{\sqrt{t+3} - 2t}{\log t} = \lim_{t \to 1} \frac{1}{2\sqrt{t+3} - 2/1} = -\frac{7}{4}.
\]

\[3\]

(b) Show that \(x - \frac{2}{3}x^3 \leq \sin x \cos x \leq x - \frac{2}{3}x^3 + \frac{2}{15}x^5 \) for all \(x \in [0, \pi/4] \). [6]

Solution. Let \(f(x) = \sin x \cos x = \frac{\sin 2x}{2} \). Then \(f^{(1)}(x) = \cos 2x, f^{(2)}(x) = -2\sin 2x = -4f(x) \). Thus

\[
f^{(3)}(x) = -4f^{(1)}(x), f^{(4)}(x) = -4f^{(2)}(x), f^{(5)}(x) = -4f^{(3)}(x),
\]

\[
f^{(1)}(0) = 1, f^{(2)}(0) = 0, f^{(3)}(0) = -4, f^{(4)}(0) = 0, f^{(5)}(0) = 16.
\]

By Taylor's Theorem, \(f(x) = x - \frac{2}{3}x^3 + \frac{2}{15}x^5 \cos 2c \) for some \(0 < c < \pi/4 \). [2]

Since \(0 \leq \cos 2c \leq 1 \), we get

\[x - \frac{2}{3}x^3 \leq f(x) \leq x - \frac{2}{3}x^3 + \frac{2}{15}x^5 \]

for all \(x \in [0, \pi/4] \). [2]
5 (a) Discuss the convergence of the following two series: \[3+3=6\]

\[
\sum_{n=2}^{\infty} \frac{\log 2 + \cdots + \log n}{n} \quad \text{and} \quad \sum_{n=1}^{\infty} \frac{n!}{2^n}.
\]

Solution. * Note that \(\frac{\log 2 + \cdots + \log n}{n} \geq \frac{\log 2 + \cdots + \log 2}{n} = \frac{n-1}{n} \log 2\) which does not converge to 0. Hence divergent.

Alternatively, this may also be done by applying limit comparison test to \(a_n = \frac{\log 2 + \cdots + \log n}{n}\) and \(b_n = \frac{1}{n!}\) (here \(\lim_{n \to \infty} \frac{a_n}{b_n} = \infty\)).

* If \(a_n = n! \frac{1}{2^n}\) then \(\frac{a_{n+1}}{a_n} = (n+1) \frac{1}{2^{n+1}}\). But \((n+1) \frac{1}{2^{n+1}} \to 0\) (by ratio test for sequences), and hence \(\frac{a_{n+1}}{a_n}\) converges to 0. By ratio test for series, \(\sum_{n=1}^{\infty} n! \frac{1}{2^n}\) is convergent.

(b) Let \((a_n)\) be a decreasing sequence such that \(a_n \to 0\). Show that \[6\]

\[
a_1 - a_2 \leq \sum_{n=1}^{\infty} (-1)^{n+1} a_n \leq a_1.
\]

Solution. By Leibniz Test, \(\sum_{n=1}^{\infty} (-1)^{n+1} a_n \) is convergent. Let \(S_n\) denote the \(n\)th partial sum of \(\sum_{n=1}^{\infty} (-1)^{n+1} a_n\). Thus \(S_n \to l\). \[2\]

Since \((a_n)\) is decreasing,

\[
S_{2n} = a_1 + (a_3 - a_2) + \cdots + (a_{2n-1} - a_{2n-2}) - a_{2n} \leq a_1.
\]

Letting \(n \to \infty\), we get \(l \leq a_1\). \[2\]

Since \((a_n)\) is decreasing,

\[
S_{2n+1} = a_1 - a_2 + (a_3 - a_4) + \cdots + (a_{2n} - a_{2n+1}) \geq a_1 - a_2.
\]

Letting \(n \to \infty\), we get \(l \geq a_1 - a_2\). \[2\]

Thus we obtain \(a_1 - a_2 \leq l \leq a_1\).
6 (a) Using Riemann’s criterion for the integrability, show that \(f(x) = \frac{1}{1+x} \) is integrable on \([0, 1]\).

Solution. Consider the partition \(P_n : \{0, 1/n, 2/n, \cdots, 1\} \) of \([0, 1]\).

Note that \(U(P_n, f) = \sum_{i=1}^{n} M_i \), where
\[
M_i = \sup_{x \in [(i-1)/n, i/n]} \frac{1}{1 + x} = \frac{n}{n + i - 1}.
\]
Thus \(U(P_n, f) = \sum_{i=1}^{n} \frac{1}{n + i - 1} \).

Note that \(L(P_n, f) = \sum_{i=1}^{n} m_i \), where
\[
m_i = \inf_{x \in [(i-1)/n, i/n]} \frac{1}{1 + x} = \frac{n}{n + i}.
\]
Thus \(L(P_n, f) = \sum_{i=1}^{n} \frac{1}{n + i} \).

It follows that \(U(P_n, f) - L(P_n, f) = \frac{1}{n} - \frac{1}{2n} = \frac{1}{2n} \to 0 \). By Riemann’s Criterion, \(f \) is integrable.

(b) Show that \(\lim_{n \to \infty} \sum_{k=1}^{n} \frac{k}{k^2 + n^2} = \log \sqrt{2} \).

Solution. We apply the formula
\[
\int_0^1 f(x) \, dx = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{f(k/n)}{n}
\]
to the function \(f(x) = \frac{x}{1+x^2} \).

A simple calculation shows that \(\sum_{k=1}^{\infty} \frac{f(k/n)}{n} = \sum_{k=1}^{n} \frac{k}{k^2 + n^2} \).

Also, \(\int_0^1 f(x) \, dx = \int_0^1 \frac{d}{dx} \frac{\log(1+x^2)}{2} \, dx \). By Fundamental Theorem of Calculus, \(\int_0^1 f(x) \, dx = \frac{\log 2}{2} = \log \sqrt{2} \).

This gives \(\lim_{n \to \infty} \sum_{k=1}^{n} \frac{k}{k^2 + n^2} = \log \sqrt{2} \).