MID SEMESTER EXAMINATION

MTH 101A, 18TH OCTOBER 2020

Time: 2 hrs (13:00-15:00hrs)
Full Marks: 60
(1) (a) Let $x_{1}=\sqrt{2}$ and x_{n} be defined recursively as $x_{n}=\sqrt{2+x_{n-1}}$. Show that the sequence $\left\{x_{n}\right\}$ converges as $n \rightarrow \infty$. Find $\lim _{n \rightarrow \infty} x_{n}$.

Soln: $\left\{x_{n}\right\}$ is bounded (by induction): $0 \leq x_{n} \leq 2$ and
$\left\{x_{n}\right\}$ is increasing (by induction)
If the limit is l then $(l-2)(l+1)=0 . l \neq-1$ as $x_{n} \geq 0$ thus $l=2$

uous. Justify your answer.
Soln: Let $x \in \mathbb{Q}$ but $x \neq 0,1$. Consider $\left\{x_{n}\right\} \subset \mathbb{R} \backslash \mathbb{Q}$ such that $x_{n} \rightarrow x$.
Then $0=f\left(x_{n}\right) \nrightarrow x(x-1)$.
Let $x \in \mathbb{R} \backslash \mathbb{Q}$. Consider $\left\{x_{n}\right\} \subset \mathbb{Q}$ such that $x_{n} \rightarrow x$.
Then $f\left(x_{n}\right)=x_{n}\left(x_{n}-1\right) \rightarrow x(x-1) \neq 0$.
For $x=0$ and $x_{n} \rightarrow x$ then $\left|f\left(x_{n}\right)\right| \leq 2\left|x_{n}\right| \rightarrow 0$
For $x=1$ and $x_{n} \rightarrow x$ then $\left|f\left(x_{n}\right)\right| \leq 2\left|x_{n}-1\right| \rightarrow 0$
(c) Let $f:[0,20] \rightarrow \mathbb{R}$ be a continuous function and $f(0)=f(10)$. Show that there exist real numbers $x_{1}, x_{2} \in[0,20]$ such that $x_{1}-x_{2}=5$ and $f\left(x_{1}\right)=f\left(x_{2}\right)$.

Soln: Consider $g(x)=f(x+5)-f(x)$. Then g is continuous.
Note that $g(0)=f(5)-f(0)$ and $g(5)=f(10)-f(5)=f(0)-f(5)$.
So $\exists x_{1} \in(0,5)$ such that $g\left(x_{1}\right)=0$ (by IVP).
Thus, $f\left(x_{1}+5\right)=f\left(x_{1}\right)$. Take $x_{2}=x_{1}+5$.
(2) (a) Using Cauchy mean value theorem prove that $x-\frac{x^{2}}{2}<\log (1+x)<x-\frac{x^{2}}{2(1+x)}$ for $x>0$.

Soln: Ist ineq: $\exists \xi \in(0, x)$ such that $\frac{x-\frac{x^{2}}{2}}{\log (1+x)}=\frac{1-\xi}{1+\xi}=1-\xi^{2}<1$
2nd Ineq: Consider $g(x)=x-\frac{x^{2}}{2(1+x)}$. Then $g^{\prime}(x)=\frac{2+2 x+x^{2}}{2(1+x)^{2}}$.
Thus $\frac{\log (1+x)}{x-\frac{x^{2}}{2(1+x)}}=\frac{2(1+\xi)}{2+2 \xi+\xi^{2}}<1$.
(b) Let $f(x)=\left(x^{2}-3\right)^{2} P(x)$ where P is a polynomial of degree 4. Show that there exist at least two distinct values of x for which $f^{\prime \prime}(x)=0$.

Soln: $f(\pm \sqrt{3})=0$. So f^{\prime} has a zero in $(-\sqrt{3}, \sqrt{3})$.
$f^{\prime}(x)=2\left(x^{2}-3\right) \cdot 2 x \cdot P(x)+\left(x^{2}-3\right)^{2} P^{\prime}(x)=\left(x^{2}-3\right)\left(4 x P(x)+\left(x^{2}-3\right)^{2} P^{\prime}(x)\right) \cdot[1]$ Thus f^{\prime} has also zero in $\pm \sqrt{3}$ i.e. f^{\prime} has three zeros.
Thus $f^{\prime \prime}$ has at least two zeros.
(c) An open-top box is made from a square sheet of cardboard by cutting a small square of cardboard from each corners and bending up sides. Each side of cardboard is 9 cm . What is the possible maximum volume of the box?

Soln: Let x be the length of the corner square. Then length $=$ width $=9-2 x$ and height $=x$. So Volume $V(x)=(9-2 x)^{2} x$.
$V^{\prime}(x)=(9-2 x)(9-6 x)$
Critical points $x=\frac{9}{2}$ and $x=\frac{9}{6}$.
$x=\frac{9}{6}$ maximum
$V\left(\frac{9}{6}\right)=(9-3)^{2} \times \frac{3}{2}=54$
(3) (a) Consider the function $f(x)=\frac{x^{3}}{9-x^{2}}$.
(i) Find slant asymptotes if any.
(ii) Determine the interval in which f is increasing or decreasing.
(iii) Find local maximum(s) or minimum(s).
(iv) Find the interval of concavity and concavity.
(v) Sketch the curve.

Soln:Vertical asymptotes: $x= \pm 3$.
As $\frac{x^{3}}{9-x^{2}}+x=\frac{9 x}{9-x^{2}} \rightarrow 0$ when $x \rightarrow \pm \infty, y=-x$ is a slant asymptote.
$f^{\prime}(x)=\frac{x^{2}\left(27-x^{2}\right)}{\left(9-x^{2}\right)^{2}}$. So f is increasing on $(-3 \sqrt{3},-3) \cup(-3,3) \cup(3,3 \sqrt{3})$
and decreasing $|x|>3 \sqrt{3}$.
Critical points $\pm 3 \sqrt{3}$. Local max at $3 \sqrt{3}$ and local minimum at $-3 \sqrt{3}$.
$f^{\prime \prime}(x)=\frac{18 x\left(x^{2}+27\right)}{\left(9-x^{2}\right)^{3}}$. Convex on $(-\infty,-3) \cup(0,3)$ and concave on $(-3,0) \cup(3, \infty)$.[1] Sketch
(b) Show that the function $f(x)=\sin x, x \in\left[0, \frac{\pi}{4}\right]$ is approximated by a polynomial $p(x)=x-\frac{x^{3}}{6}$ with an error term less than $\frac{1}{200}$.

Soln: By Taylor's theorem $f(x)=\sin x=x-\frac{x^{3}}{6}+\frac{\cos c}{5!} x^{5}$
Error term $E(x)=f(x)-P(x)=\frac{\cos c}{5!} x^{5}$
$|E(x)| \leq \frac{\pi^{5}}{120 \times 4^{5}} \leq \frac{1}{200}$.
(c) Use Newton-Raphson to find first three approximation for $2^{\frac{1}{4}}$ by considering first approximation to be 1 .

Soln: Let $f(x)=x^{4}-2$ then $\left.f^{\prime} x\right)=4 x^{3}$.
$x_{1}=1$. So $x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}=1-\frac{-1}{4}=\frac{5}{4}$.
$x_{3}=\frac{5}{4}-\frac{f\left(\frac{5}{4}\right)}{f^{\prime}\left(\frac{5}{4}\right)}=\frac{5}{4}-\frac{625-512}{\underline{16} \times 125}$.
(4) (a) Let $a_{n}>0$ for all n and the series $\sum_{n=1}^{\infty} \frac{a_{n}}{1+a_{n}}$ converges. Show that the series $\sum_{n=1}^{\infty} a_{n}$ converges.

Soln: $\exists N_{0}$ such that $\frac{a_{n}}{1+a_{n}}<\frac{1}{2} \forall n>N_{0}$.
Therefore $a_{n} \leq 1$ and $\frac{1}{1+a_{n}} \geq \frac{1}{2} \forall n>N_{0}$
$\frac{a_{n}}{1+a_{n}} \geq \frac{1}{2} a_{n}$.
(b) Show that the series $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^{2}}$ converges.

Soln: By Cauchy condensation test for non-negative decreasing a_{n}, $\sum a_{n}$ and $\sum 2^{k} a_{2^{k}}$ converges diverges simultaneously. Realising positive and decreasing
$\sum 2^{k} \frac{1}{2^{k} k^{2}(\log 2)^{2}}=\frac{1}{(\log 2)^{2}} \sum \frac{1}{k^{2}}$ is a convergent series.
(c) Determine all values of x for which the series $\sum_{n=1}^{\infty} \frac{n^{x n}}{4^{2 n}}$ converges.

Soln: By Root test $a_{n}^{\frac{1}{n}}=\frac{n^{x}}{4^{2}}$.
Thus if $x \leq 0$ it goes to zero so converges.
If $x>0$ it goes to ∞ so diverges.
(5) (a) Let $f:[0,1] \rightarrow \mathbb{R}$ be defined as

$$
f(x)= \begin{cases}\frac{1}{2^{n}} & \text { if } x \in\left(\frac{1}{2^{n+1}}, \frac{1}{2^{n}}\right], \quad n=0,1,2, \ldots \tag{4}\\ 0 & \text { if } x=0 .\end{cases}
$$

Show that $\int_{0}^{1} f(x) d x=\frac{2}{3}$.
Soln:

$$
\begin{align*}
\int_{0}^{1} f(x) d x & =\sum_{n=0}^{\infty} \int_{\frac{1}{2^{n+1}}}^{\frac{1}{2^{n}}} f(x) d x \tag{1}\\
& =\sum_{n=0}^{\infty} \frac{1}{2^{n}} \int_{\frac{1}{2^{n+1}}}^{\frac{1}{2^{n}}} d x \tag{1}\\
& =\sum_{n=0}^{\infty} \frac{1}{2^{n}}\left(\frac{1}{2^{n}}-\frac{1}{2^{n+1}}\right) \tag{1}\\
& =\frac{1}{2} \times \frac{4}{3} \tag{1}
\end{align*}
$$

(b) Let f be continuous function on $[0,1]$ and $\int_{0}^{1} f(x) d x=0$. Show that there exists at least one $c \in[0,1]$ such that $f(c)=0$.

Soln: Define $F(x)=\int_{0}^{x} f(t) d t$
$F(0)=F(1)=0$
$\exists c \in(0,1)$ such that $F^{\prime}(c)=f(c)=0$.
(c) Let f be a function such that for every $n \in \mathbb{N}$ the integral $\int_{1}^{n} f\left((x) d x=I_{n}\right.$ exists. If $\lim _{n \rightarrow \infty} I_{n}$ exists then is it necessarily true that $\int_{1}^{\infty} f(x) d x$ exists as an improper integral?
If answer is yes then prove it. If answer is no then give a counter example.
Soln: Consider $f(x)=\sin 2 \pi x$
$\int_{1}^{n} f(x) d x=0$ hence $\lim _{n \rightarrow \infty} \int_{1}^{n} f(x) d x=0$

However,

$$
\begin{aligned}
\int_{1}^{n+\frac{1}{2}} f(x) d x & =\int_{n}^{n+\frac{1}{2}} \sin 2 \pi x d x \\
& =-\frac{1}{2 \pi}\left[\cos 2 \pi\left(n+\frac{1}{2}\right)-\cos 2 \pi n\right] \\
& =\frac{1}{2 \pi} \nrightarrow 0
\end{aligned}
$$

