
MTH101AA (2020), Tentative Marking Scheme - Mid sem. exam

1. (a) Consider a sequence of positive real numbers (xn) such that 1 ≤ x1 ≤ x2 ≤ 3

and x2
n+1 = xnxn−1 for all n ≥ 2. Show that (xn) is a Cauchy sequence. [5]

Solution: Observe that x2
n+1 − x2

n = xnxn−1 − x2
n = xn(xn−1 − xn). [1]

Therefore |xn+1 − xn| = | xn

xn+1+xn
||xn−1 − xn|. [1]

Since 1 ≤ xn ≤ 3 for all n and xn+1

xn
≥ 1

3
, xn+1+xn

xn
≥ 4

3
. [2]

Therefore, |xn+1 − xn| ≤ 3
4
|xn−1 − xn|. [1]

(b) Let xn = 2 + (−1)n for n ∈ N. Show that lim
n→∞

(x1x2 . . . xn)
1
n =

√
3. [5]

Solution: Let yn = (x1x2 . . . xn)
1
n . Then y2n−1 = (3n−1)

1
2n−1 for n ≥ 1 [2]

and y2n = (3n)
1
2n for n ≥ 1. [2]

Note that y2n →
√
3 and y2n−1 →

√
3 and therefore, yn →

√
3. [1]

(c) Let f : [0, 1] → R be a differentiable function such that f ′(x) < 1 for all

x ∈ [0, 1] and f(0) = 1. Show that f(1) < 2. [2]

Solution: By MVT, f(1)− f(0) = f ′(c) for some c ∈ [0, 1]. [2]

2. (a) Let f : [0, 1] → R be a continuous function such that f(x) = f(
√
x) for all

x ∈ [0, 1]. Show that f is constant. [4]

Solution: For x ∈ (0, 1], note that f(x) = f(x
1
2 ) = f(x

1
22 ) = f(x

1
2n ). [2]

Since x
1
2n → 1, f(x

1
2n ) → f(1) and hence f(x) = f(1). [1]

By continuity of f , limx→0 f(x) = f(0) = f(1). [1]

(b) Let f(x) =

0 if x ∈ Q

x if x ∈ R \Q
. Determine the set of points in which f is

continuous. [5]

Solution: At x0 = 0: Note that |f(x)− f(0)| ≤ |x− 0| for all x ∈ R.
As f(xn) → f(0) whenever xn → 0, f is continuous at 0. [2]

Suppose x0 is non-zero rational.

Then there exists a sequence of irrationals (xn) such that xn → x0. [1]

Since f(xn) = xn → x0 ̸= f(x0), f is not continuous at x0. [1]

Suppose x0 is irrational.

Then there exists a sequence of rationals (xn) such that xn → x0.

Since f(xn) = 0 → 0 ̸= f(x0), f is not continuous at x0. [1]

(c) Let f : (0,∞) → R be defined by f(x) = 3−4
1
x

1+4
1
x
. Show that there exists

x0 ∈ (0,∞) such that f(x0) =
5
2
. [3]

Solution: This question will not be evaluated. However, 3 marks will be

added to all the students after the evaluation.

3. (a) Let P (x) be a polynomial which has at least two distinct real roots. Show

that P ′(x) + 10P (x) has a real root. [5]



Solution: Suppose P (x0) = P (y0) = 0 for some x0, y0 ∈ R and x0 ̸= y0.

Let g(x) = P (x)e10x. [2]

Since g(x0) = g(y0) = 0, ∃ z0 ∈ R such that g′(z0) = 0. [1]

Note that g′(z0) = e10z0 [P ′(z0) + 10P (z0)]. [1]

Therefore, P ′(z0) + 10P (z0) = 0. [1]

(b) Determine the values of x for which the power series
∞∑
n=2

(−1)nxn

n(logn)
1
2
converges.

[5]

Solution: If for a fixed x, an = (−1)nxn

n(logn)
1
2
, then

∣∣∣an+1

an

∣∣∣ → |x|. [2]

Hence the power series converges for |x| < 1. [1]

When x = 1, the series converges by Leibniz test. [1]

When x = −1, the series is
∞∑
n=2

1

n(logn)
1
2
which diverges. [1]

(c) Let P (x) = a + bx + cx2 where a, b and c are non-zero real numbers. Define

f(x) = P (x|x|) for all x ∈ R. Show that f is differentiable at 0. [2]

Solution: limt→0
f(t)−f(0)

t
= limt→0

a+bt|t|+ct4−a
t

= 0. [2]

4. (a) Using Cauchy mean value theorem, show that e−x3 ≥ 1− x3 for x > 0. [3]

Solution: Let x > 0.

By CMVT, there exists c > 0 such that e−x3−e0

1−x3−1
= −3c2e−c3

−3c2
. [2]

Since e−c3 < 1, e−x3 ≥ 1− x3. [1]

(b) Starting with the initial value x1 = −1, using Newton-Raphson method, find

the third approximation x3 to a real root of the equation x3− 4x2−x+2 = 0

up to three decimal places. [4]

Solution: Let f(x) = x3 − 4x2 − x+ 2. Then f ′(x) = 3x2 − 8x− 1.

By Newton-Raphson method, x2 = x1 − f(x1)
f ′(x1)

[1]

Hence x2 = (−1)− (−1)3−4+1+2
3+8−1

[1]

= −0.8

x3 = (−0.8)− (−0.8)3−4(0.8)2+0.8+2
3(0.8)2+8(0.8)−1

[1]

≈ −0.763 [1]

(c) Let f : [−1, 1] → R be a twice differentiable function such that f ′(0) = 0 and

f(1) = f(−1). Show that there exist c1 ∈ [−1, 0] and c2 ∈ [0, 1] such that

f ′′(c1) = f ′′(c2). [5]

Solution: By EMVT, f(1) = f(0) + f ′(0) + f ′′(c1)
2

for some c1 ∈ [0, 1] [2]

and f(−1) = f(0)− f ′(0) + f ′′(c2)
2

for some c2 ∈ [−1, 0] [2]

Hence f ′′(c1)
2

= f(1)− f(0) = f(−1)− f(0) = f ′′(c2)
2

[1]

5. (a) Discuss the convergence/divergence of the following series:
∞∑
n=1

(
sin 1

n
− sin 1

n+2

)
[4]

Solution: The partial sum



Sn = (sin1− sin1
3
) + (sin1

2
− sin1

4
) + · · ·+ (sin 1

n
− sin 1

n+2
). [2]

Note that Sn = sin1 + sin1
2
− sin 1

n+1
− sin 1

n+2
[1]

Since (Sn) converges, the series converges. [1]

OR

Note that | sin 1
n
− sin 1

n+2
| ≤ | 1

n
− 1

n+2
|. [2]

Since
∞∑
n=1

2
n(n+2)

converges, the series converges absolutely . [1]

Since Abs. Conv. ⇒ Conv.,
∞∑
n=1

(
sin 1

n
− sin 1

n+2

)
converges. [1]

(b) Let an > 0 for all n ∈ N and
∞∑
n=1

an converge. Show that
∞∑
n=1

an(a1+a2+· · ·+an)

converges. [5]

Solution: Let (Sn) denote the partial sum of
∞∑
n=1

an and let Sn → S. [1]

Since (Sn) is increasing Sn ≤ S for all n. [1]

Hence an(a1 + a2 + · · ·+ an) ≤ anS. [2]

Since
∞∑
n=1

(anS) converges,
∞∑
n=1

an(a1 + a2 + · · ·+ an) converges, [1]

by comparison test.

(c) Show that x15 + 100x5 − 5e−x = 0 has exactly one real solution. [3]

Solution: Let f(x) = x15 + 100x5 − 5e−x.

Sincef(0) < 0 and f(1) > 0, by IVP, f(x) = 0 has a real solution. [1]

Note that f ′(x) > 0 for all x.

Hence, f(x) = 0 has exactly one real solution as f is strictly increasing. [2]

OR If f(x) = 0 has two real solutions, then by Rolle’s theorem f ′(x0) = 0

which is not true. [2]

6. (a) Consider the function f(x) = 2x3−x2+9
2(9−x2)

.

(i) Find the vertical and slant asymptotes if any.

(ii) Determine the intervals in which f is increasing/decreasing.

(iii) Find the points of local maximum and local minimum.

(iv) Find the intervals of convexity/concavity and point of inflection.

(v) Sketch the graph. [8]

Solution: Vertical asymptotes: x = ±3. [1]

Observe that 2x3−x2+9
2(9−x2)

= (−x+ 1
2
) + 9x

9−x2 [1]

Note that y = −x+ 1
2
is a slant asymptote. [1]

f ′(x) = x2(27−x2)
(9−x2)2

. So f is increasing on (−3
√
3,−3) ∪ (−3, 3) ∪ (3, 3

√
3)

and decreasing |x| > 3
√
3. [1]

Critical points ±3
√
3. Local max at 3

√
3 and local minimum at −3

√
3. [1]

f ′′(x) = 18x(x2+27)
(9−x2)3

. Convex on (−∞,−3) ∪ (0, 3) and concave on (−3, 0) ∪
(3,∞). [1]

0 is the point of inflection [1]



Sketch [1]

(b) Let f : [0, 1] → R. Suppose for each x ∈ [0, 1] there exists y ∈ [0, 1] such that

|f(y)| ≤ |f(x)|. Show that there is a sequence (xn) in [0, 1] such that (|f(xn)|)
converges. [2]

Solution: Find (xn) such that · · · ≤ |f(xn)| · ·· ≤ |f(x2)| ≤ |f(x1)|. [1]

Since (|f(xn)|) is decreasing and bounded below by 0, it converges. [1]


