MTH101AA (2020), Tentative Marking Scheme - Mid sem. exam

(a) Consider a sequence of positive real numbers (x_n) such that $1 \le x_1 \le x_2 \le 3$ 1. and $x_{n+1}^2 = x_n x_{n-1}$ for all $n \ge 2$. Show that (x_n) is a Cauchy sequence. $\left[5\right]$ **Solution:** Observe that $x_{n+1}^2 - x_n^2 = x_n x_{n-1} - x_n^2 = x_n (x_{n-1} - x_n)$. [1]Therefore $|x_{n+1} - x_n| = |\frac{x_n}{x_{n+1} + x_n}| |x_{n-1} - x_n|.$ Since $1 \le x_n \le 3$ for all n and $\frac{x_{n+1}}{x_n} \ge \frac{1}{3}, \frac{x_{n+1} + x_n}{x_n} \ge \frac{4}{3}.$ [1][2]Therefore, $|x_{n+1} - x_n| \le \frac{3}{4}|x_{n-1} - x_n|$. [1]

(b) Let
$$x_n = 2 + (-1)^n$$
 for $n \in \mathbb{N}$. Show that $\lim_{n \to \infty} (x_1 x_2 \dots x_n)^{\frac{1}{n}} = \sqrt{3}$. [5]

Solution: Let
$$y_n = (x_1 x_2 \dots x_n)^{\frac{1}{n}}$$
. Then $y_{2n-1} = (3^{n-1})^{\frac{1}{2n-1}}$ for $n \ge 1$ [2]
and $y_{2n} = (3^n)^{\frac{1}{2n}}$ for $n \ge 1$. [2]
Note that $y_{2n} \to \sqrt{3}$ and $y_{2n-1} \to \sqrt{3}$ and therefore, $y_n \to \sqrt{3}$. [1]

Note that
$$y_{2n} \to \sqrt{3}$$
 and $y_{2n-1} \to \sqrt{3}$ and therefore, $y_n \to \sqrt{3}$. [1]

(c) Let $f: [0,1] \to \mathbb{R}$ be a differentiable function such that f'(x) < 1 for all $x \in [0, 1]$ and f(0) = 1. Show that f(1) < 2. [2]**Solution:** By MVT, f(1) - f(0) = f'(c) for some $c \in [0, 1]$. [2]

2. (a) Let
$$f : [0,1] \to \mathbb{R}$$
 be a continuous function such that $f(x) = f(\sqrt{x})$ for all $x \in [0,1]$. Show that f is constant. [4]
Solution: For $x \in (0,1]$, note that $f(x) = f(x^{\frac{1}{2}}) = f(x^{\frac{1}{2^2}}) = f(x^{\frac{1}{2^n}})$. [2]
Since $x^{\frac{1}{2^n}} \to 1, f(x^{\frac{1}{2^n}}) \to f(1)$ and hence $f(x) = f(1)$. [1]
By continuity of f , $\lim_{x\to 0} f(x) = f(0) = f(1)$. [1]

(b) Let
$$f(x) = \begin{cases} 0 & if \ x \in \mathbb{Q} \\ x & if \ x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$
. Determine the set of points in which f is continuous. [5]

continuous.

Solution: At $x_0 = 0$: Note that $|f(x) - f(0)| \le |x - 0|$ for all $x \in \mathbb{R}$. As $f(x_n) \to f(0)$ whenever $x_n \to 0$, f is continuous at 0. [2]Suppose x_0 is non-zero rational. Then there exists a sequence of irrationals (x_n) such that $x_n \to x_0$. [1]

Since $f(x_n) = x_n \to x_0 \neq f(x_0)$, f is not continuous at x_0 . [1]Suppose x_0 is irrational.

Then there exists a sequence of rationals (x_n) such that $x_n \to x_0$.

Since $f(x_n) = 0 \rightarrow 0 \neq f(x_0)$, f is not continuous at x_0 . [1]

- (c) Let $f: (0,\infty) \to \mathbb{R}$ be defined by $f(x) = \frac{3-4^{\frac{1}{x}}}{1+4^{\frac{1}{x}}}$. Show that there exists $x_0 \in (0,\infty)$ such that $f(x_0) = \frac{5}{2}$. [3]Solution: This question will not be evaluated. However, 3 marks will be added to all the students after the evaluation.
- 3. (a) Let P(x) be a polynomial which has at least two distinct real roots. Show that P'(x) + 10P(x) has a real root. [5]

Solution: Suppose $P(x_0) = P(y_0) = 0$ for some $x_0, y_0 \in \mathbb{R}$ and $x_0 \neq y_0$. Let $g(x) = P(x)e^{10x}$. [2] Since $g(x_0) = g(y_0) = 0, \exists z_0 \in \mathbb{R}$ such that $g'(z_0) = 0$. [1] Note that $g'(z_0) = e^{10z_0}[P'(z_0) + 10P(z_0)]$. [1] Therefore, $P'(z_0) + 10P(z_0) = 0$. [1]

(b) Determine the values of x for which the power series $\sum_{n=2}^{\infty} \frac{(-1)^n x^n}{n(\log n)^{\frac{1}{2}}}$ converges. [5]

Solution: If for a fixed x, $a_n = \frac{(-1)^n x^n}{n(\log n)^{\frac{1}{2}}}$, then $\left|\frac{a_{n+1}}{a_n}\right| \to |x|$. [2] Hence the power series converges for |x| < 1. [1]

When x = 1, the series converges by Leibniz test. [1]

When
$$x = -1$$
, the series is $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^{\frac{1}{2}}}$ which diverges. [1]

(c) Let $P(x) = a + bx + cx^2$ where a, b and c are non-zero real numbers. Define f(x) = P(x|x|) for all $x \in \mathbb{R}$. Show that f is differentiable at 0. [2] **Solution:** $\lim_{t\to 0} \frac{f(t)-f(0)}{t} = \lim_{t\to 0} \frac{a+bt|t|+ct^4-a}{t} = 0.$ [2]

4. (a) Using Cauchy mean value theorem, show that $e^{-x^3} \ge 1 - x^3$ for x > 0. [3] **Solution:** Let x > 0.

By CMVT, there exists
$$c > 0$$
 such that $\frac{e^{-x} - e^0}{1 - x^3 - 1} = \frac{-3c^2 e^{-c}}{-3c^2}$. [2]
Since $e^{-c^3} < 1$, $e^{-x^3} > 1 - x^3$. [1]

(b) Starting with the initial value $x_1 = -1$, using Newton-Raphson method, find the third approximation x_3 to a real root of the equation $x^3 - 4x^2 - x + 2 = 0$ up to three decimal places. [4]

Solution: Let $f(x) = x^3 - 4x^2 - x + 2$. Then $f'(x) = 3x^2 - 8x - 1$. By Newton-Raphson method, $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$ [1]

Hence
$$x_2 = (-1) - \frac{(-1)^3 - 4 + 1 + 2}{3 + 8 - 1}$$
 [1]

$$= -0.8$$

$$x_3 = (-0.8) - \frac{(-0.8)^3 - 4(0.8)^2 + 0.8 + 2}{3(0.8)^2 + 8(0.8) - 1}$$

$$\approx -0.763$$
[1]

(c) Let $f: [-1,1] \to \mathbb{R}$ be a twice differentiable function such that f'(0) = 0 and f(1) = f(-1). Show that there exist $c_1 \in [-1,0]$ and $c_2 \in [0,1]$ such that $f''(c_1) = f''(c_2)$. [5]

Solution: By EMVT, $f(1) = f(0) + f'(0) + \frac{f''(c_1)}{2}$ for some $c_1 \in [0, 1]$ [2] and $f(-1) = f(0) - f'(0) + \frac{f''(c_2)}{2}$ for some $c_2 \in [-1, 0]$ [2]

Hence
$$\frac{f''(c_1)}{2} = f(1) - f(0) = f(-1) - f(0) = \frac{f''(c_2)}{2}$$
 [1]

5. (a) Discuss the convergence/divergence of the following series:

$$\sum_{n=1}^{\infty} \left(\sin \frac{1}{n} - \sin \frac{1}{n+2} \right)$$

$$[4]$$

Solution: The partial sum

$$S_n = (\sin 1 - \sin \frac{1}{3}) + (\sin \frac{1}{2} - \sin \frac{1}{4}) + \dots + (\sin \frac{1}{n} - \sin \frac{1}{n+2}).$$
 [2]

Note that
$$S_n = \sin 1 + \sin \frac{1}{2} - \sin \frac{1}{n+1} - \sin \frac{1}{n+2}$$
 [1]

Since (S_n) converges, the series converges. [1]

OR

Note that $|\sin\frac{1}{n} - \sin\frac{1}{n+2}| \le |\frac{1}{n} - \frac{1}{n+2}|.$ [2]

Since
$$\sum_{n=1}^{\infty} \frac{2}{n(n+2)}$$
 converges, the series converges absolutely . [1]

Since Abs. Conv.
$$\Rightarrow$$
 Conv., $\sum_{n=1}^{\infty} \left(\sin \frac{1}{n} - \sin \frac{1}{n+2} \right)$ converges. [1]

(b) Let $a_n > 0$ for all $n \in \mathbb{N}$ and $\sum_{n=1}^{\infty} a_n$ converge. Show that $\sum_{n=1}^{\infty} a_n(a_1+a_2+\cdots+a_n)$ converges. [5]

Solution: Let
$$(S_n)$$
 denote the partial sum of $\sum_{n=1}^{\infty} a_n$ and let $S_n \to S$. [1]

Since
$$(S_n)$$
 is increasing $S_n \leq S$ for all n . [1]

Hence
$$\underset{\infty}{a_n(a_1 + a_2 + \dots + a_n)}_{\infty} \le a_n S.$$
 [2]

Since
$$\sum_{n=1}^{\infty} (a_n S)$$
 converges, $\sum_{n=1}^{\infty} a_n (a_1 + a_2 + \dots + a_n)$ converges, [1] by comparison test.

(c) Show that $x^{15} + 100x^5 - 5e^{-x} = 0$ has exactly one real solution. [3]

Solution: Let $f(x) = x^{15} + 100x^5 - 5e^{-x}$. Since f(0) < 0 and f(1) > 0, by IVP, f(x) = 0 has a real solution. [1] Note that f'(x) > 0 for all x.

Hence, f(x) = 0 has exactly one real solution as f is strictly increasing. [2] OR If f(x) = 0 has two real solutions, then by Rolle's theorem $f'(x_0) = 0$ which is not true. [2]

- 6. (a) Consider the function $f(x) = \frac{2x^3 x^2 + 9}{2(9 x^2)}$.
 - (i) Find the vertical and slant asymptotes if any.
 - (ii) Determine the intervals in which f is increasing/decreasing.
 - (iii) Find the points of local maximum and local minimum.
 - (iv) Find the intervals of convexity/concavity and point of inflection.
 - (v) Sketch the graph.

[8]

[1]

Solution: Vertical asymptotes: $x = \pm 3$. [1]

Observe that
$$\frac{2x^3 - x^2 + 9}{2(9 - x^2)} = (-x + \frac{1}{2}) + \frac{9x}{9 - x^2}$$
 [1]

Note that $y = -x + \frac{1}{2}$ is a slant asymptote. [1] $f'(x) = \frac{x^2(27-x^2)}{(9-x^2)^2}$. So f is increasing on $(-3\sqrt{3}, -3) \cup (-3, 3) \cup (3, 3\sqrt{3})$

and decreasing
$$|x| > 3\sqrt{3}$$
. [1]
Critical points $\pm 3\sqrt{3}$. Local max at $3\sqrt{3}$ and local minimum at $-3\sqrt{3}$. [1]
 $f''(x) = \frac{18x(x^2+27)}{(9-x^2)^3}$. Convex on $(-\infty, -3) \cup (0, 3)$ and concave on $(-3, 0) \cup$

$$[3,\infty).$$

0 is the point of inflection

Sketch

(b) Let $f : [0,1] \to \mathbb{R}$. Suppose for each $x \in [0,1]$ there exists $y \in [0,1]$ such that $|f(y)| \le |f(x)|$. Show that there is a sequence (x_n) in [0,1] such that $(|f(x_n)|)$ converges. [2]

Solution: Find (x_n) such that $\cdots \leq |f(x_n)| \cdots \leq |f(x_2)| \leq |f(x_1)|$. [1]

Since $(|f(x_n)|)$ is decreasing and bounded below by 0, it converges. [1]