## MTH101AA (2020), Tentative Marking Scheme - Mid sem. exam

1. (a) Consider a sequence of positive real numbers $\left(x_{n}\right)$ such that $1 \leq x_{1} \leq x_{2} \leq 3$ and $x_{n+1}^{2}=x_{n} x_{n-1}$ for all $n \geq 2$. Show that $\left(x_{n}\right)$ is a Cauchy sequence. [5]
Solution: Observe that $x_{n+1}^{2}-x_{n}^{2}=x_{n} x_{n-1}-x_{n}^{2}=x_{n}\left(x_{n-1}-x_{n}\right)$. $\quad$ [1]
Therefore $\left|x_{n+1}-x_{n}\right|=\left|\frac{x_{n}}{x_{n+1}+x_{n}}\right|\left|x_{n-1}-x_{n}\right|$.
Since $1 \leq x_{n} \leq 3$ for all $n$ and $\frac{x_{n+1}}{x_{n}} \geq \frac{1}{3}, \frac{x_{n+1}+x_{n}}{x_{n}} \geq \frac{4}{3}$.
Therefore, $\left|x_{n+1}-x_{n}\right| \leq \frac{3}{4}\left|x_{n-1}-x_{n}\right|$.
b) Let $x_{n}=2+(-1)^{n}$ for $n \in \mathbb{N}$. Show that $\lim _{n \rightarrow \infty}\left(x_{1} x_{2} \ldots x_{n}\right)^{\frac{1}{n}}=\sqrt{3}$.

Solution: Let $y_{n}=\left(x_{1} x_{2} \ldots x_{n}\right)^{\frac{1}{n}}$. Then $y_{2 n-1}=\left(3^{n-1}\right)^{\frac{1}{2 n-1}}$ for $n \geq 1 \quad$ [2] and $y_{2 n}=\left(3^{n}\right)^{\frac{1}{2 n}}$ for $n \geq 1$.
Note that $y_{2 n} \rightarrow \sqrt{3}$ and $y_{2 n-1} \rightarrow \sqrt{3}$ and therefore, $y_{n} \rightarrow \sqrt{3}$.
(c) Let $f:[0,1] \rightarrow \mathbb{R}$ be a differentiable function such that $f^{\prime}(x)<1$ for all $x \in[0,1]$ and $f(0)=1$. Show that $f(1)<2$.
Solution: By MVT, $f(1)-f(0)=f^{\prime}(c)$ for some $c \in[0,1]$.
2. (a) Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function such that $f(x)=f(\sqrt{x})$ for all $x \in[0,1]$. Show that $f$ is constant.
Solution: For $x \in(0,1]$, note that $f(x)=f\left(x^{\frac{1}{2}}\right)=f\left(x^{\frac{1}{2^{2}}}\right)=f\left(x^{\frac{1}{2^{n}}}\right)$. $\quad[2]$
Since $x^{\frac{1}{2^{n}}} \rightarrow 1, f\left(x^{\frac{1}{2^{n}}}\right) \rightarrow f(1)$ and hence $f(x)=f(1)$. [1]
By continuity of $f, \lim _{x \rightarrow 0} f(x)=f(0)=f(1)$.
(b) Let $f(x)=\left\{\begin{array}{ll}0 & \text { if } x \in \mathbb{Q} \\ x & \text { if } x \in \mathbb{R} \backslash \mathbb{Q}\end{array}\right.$. Determine the set of points in which $f$ is continuous.
Solution: At $x_{0}=0$ : Note that $|f(x)-f(0)| \leq|x-0|$ for all $x \in \mathbb{R}$.
As $f\left(x_{n}\right) \rightarrow f(0)$ whenever $x_{n} \rightarrow 0, f$ is continuous at 0 .
Suppose $x_{0}$ is non-zero rational.
Then there exists a sequence of irrationals $\left(x_{n}\right)$ such that $x_{n} \rightarrow x_{0}$.
Since $f\left(x_{n}\right)=x_{n} \rightarrow x_{0} \neq f\left(x_{0}\right), f$ is not continuous at $x_{0}$.
Suppose $x_{0}$ is irrational.
Then there exists a sequence of rationals $\left(x_{n}\right)$ such that $x_{n} \rightarrow x_{0}$.
Since $f\left(x_{n}\right)=0 \rightarrow 0 \neq f\left(x_{0}\right), f$ is not continuous at $x_{0}$.
(c) Let $f:(0, \infty) \rightarrow \mathbb{R}$ be defined by $f(x)=\frac{3-4^{\frac{1}{x}}}{1+4^{\frac{1}{x}}}$. Show that there exists $x_{0} \in(0, \infty)$ such that $f\left(x_{0}\right)=\frac{5}{2}$.
Solution: This question will not be evaluated. However, 3 marks will be added to all the students after the evaluation.
3. (a) Let $P(x)$ be a polynomial which has at least two distinct real roots. Show that $P^{\prime}(x)+10 P(x)$ has a real root.

Solution: Suppose $P\left(x_{0}\right)=P\left(y_{0}\right)=0$ for some $x_{0}, y_{0} \in \mathbb{R}$ and $x_{0} \neq y_{0}$.
Let $g(x)=P(x) e^{10 x}$.
Since $g\left(x_{0}\right)=g\left(y_{0}\right)=0, \exists z_{0} \in \mathbb{R}$ such that $g^{\prime}\left(z_{0}\right)=0$.
Note that $g^{\prime}\left(z_{0}\right)=e^{10 z_{0}}\left[P^{\prime}\left(z_{0}\right)+10 P\left(z_{0}\right)\right]$.
Therefore, $P^{\prime}\left(z_{0}\right)+10 P\left(z_{0}\right)=0$.
(b) Determine the values of $x$ for which the power series $\sum_{n=2}^{\infty} \frac{(-1)^{n} x^{n}}{n(\log n)^{\frac{1}{2}}}$ converges. [5]
Solution: If for a fixed $x, a_{n}=\frac{(-1)^{n} x^{n}}{n(\log n)^{\frac{1}{2}}}$, then $\left|\frac{a_{n+1}}{a_{n}}\right| \rightarrow|x|$.
Hence the power series converges for $|x|<1$.
When $x=1$, the series converges by Leibniz test.
When $x=-1$, the series is $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^{\frac{1}{2}}}$ which diverges.
(c) Let $P(x)=a+b x+c x^{2}$ where $a, b$ and $c$ are non-zero real numbers. Define $f(x)=P(x|x|)$ for all $x \in \mathbb{R}$. Show that $f$ is differentiable at 0 .
Solution: $\lim _{t \rightarrow 0} \frac{f(t)-f(0)}{t}=\lim _{t \rightarrow 0} \frac{a+b t|t|+c t^{4}-a}{t}=0$.
4. (a) Using Cauchy mean value theorem, show that $e^{-x^{3}} \geq 1-x^{3}$ for $x>0$. [3]

Solution: Let $x>0$.
By CMVT, there exists $c>0$ such that $\frac{e^{-x^{3}}-e^{0}}{1-x^{3}-1}=\frac{-3 c^{2} e^{-c^{3}}}{-3 c^{2}}$.
Since $e^{-c^{3}}<1, e^{-x^{3}} \geq 1-x^{3}$.
(b) Starting with the initial value $x_{1}=-1$, using Newton-Raphson method, find the third approximation $x_{3}$ to a real root of the equation $x^{3}-4 x^{2}-x+2=0$ up to three decimal places.
Solution: Let $f(x)=x^{3}-4 x^{2}-x+2$. Then $f^{\prime}(x)=3 x^{2}-8 x-1$.
By Newton-Raphson method, $x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}$
Hence $x_{2}=(-1)-\frac{(-1)^{3}-4+1+2}{3+8-1}$

$$
\begin{align*}
& =-0.8  \tag{1}\\
x_{3} & =(-0.8)-\frac{(-0.8)^{3}-4(0.8)^{2}+0.8+2}{3(0.8)^{2}+8(0.8)-1}  \tag{1}\\
& \approx-0.763 \tag{1}
\end{align*}
$$

(c) Let $f:[-1,1] \rightarrow \mathbb{R}$ be a twice differentiable function such that $f^{\prime}(0)=0$ and $f(1)=f(-1)$. Show that there exist $c_{1} \in[-1,0]$ and $c_{2} \in[0,1]$ such that $f^{\prime \prime}\left(c_{1}\right)=f^{\prime \prime}\left(c_{2}\right)$.
Solution: By EMVT, $f(1)=f(0)+f^{\prime}(0)+\frac{f^{\prime \prime}\left(c_{1}\right)}{2}$ for some $c_{1} \in[0,1] \quad[2]$ and $f(-1)=f(0)-f^{\prime}(0)+\frac{f^{\prime \prime}\left(c_{2}\right)}{2}$ for some $c_{2} \in[-1,0]$
Hence $\frac{f^{\prime \prime}\left(c_{1}\right)}{2}=f(1)-f(0)=f(-1)-f(0)=\frac{f^{\prime \prime}\left(c_{2}\right)}{2}$
5. (a) Discuss the convergence/divergence of the following series:

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\sin \frac{1}{n}-\sin \frac{1}{n+2}\right) \tag{4}
\end{equation*}
$$

Solution: The partial sum
$S_{n}=\left(\sin 1-\sin \frac{1}{3}\right)+\left(\sin \frac{1}{2}-\sin \frac{1}{4}\right)+\cdots+\left(\sin \frac{1}{n}-\sin \frac{1}{n+2}\right)$.
Note that $S_{n}=\sin 1+\sin \frac{1}{2}-\sin \frac{1}{n+1}-\sin \frac{1}{n+2}$
Since $\left(S_{n}\right)$ converges, the series converges.
OR
Note that $\left|\sin \frac{1}{n}-\sin \frac{1}{n+2}\right| \leq\left|\frac{1}{n}-\frac{1}{n+2}\right|$.
Since $\sum_{n=1}^{\infty} \frac{2}{n(n+2)}$ converges, the series converges absolutely .
Since Abs. Conv. $\Rightarrow$ Conv., $\sum_{n=1}^{\infty}\left(\sin \frac{1}{n}-\sin \frac{1}{n+2}\right)$ converges.
(b) Let $a_{n}>0$ for all $n \in \mathbb{N}$ and $\sum_{n=1}^{\infty} a_{n}$ converge. Show that $\sum_{n=1}^{\infty} a_{n}\left(a_{1}+a_{2}+\cdots+a_{n}\right)$ converges.
Solution: Let $\left(S_{n}\right)$ denote the partial sum of $\sum_{n=1}^{\infty} a_{n}$ and let $S_{n} \rightarrow S$. [1]
Since $\left(S_{n}\right)$ is increasing $S_{n} \leq S$ for all $n$.
Hence $a_{n}\left(a_{1}+a_{2}+\cdots+a_{n}\right) \leq a_{n} S$.
Since $\sum_{n=1}^{\infty}\left(a_{n} S\right)$ converges, $\sum_{n=1}^{\infty} a_{n}\left(a_{1}+a_{2}+\cdots+a_{n}\right)$ converges, by comparison test.
(c) Show that $x^{15}+100 x^{5}-5 e^{-x}=0$ has exactly one real solution.

Solution: Let $f(x)=x^{15}+100 x^{5}-5 e^{-x}$.
Since $f(0)<0$ and $f(1)>0$, by IVP, $f(x)=0$ has a real solution.
Note that $f^{\prime}(x)>0$ for all $x$.
Hence, $f(x)=0$ has exactly one real solution as $f$ is strictly increasing. [2]
OR If $f(x)=0$ has two real solutions, then by Rolle's theorem $f^{\prime}\left(x_{0}\right)=0$ which is not true.
6. (a) Consider the function $f(x)=\frac{2 x^{3}-x^{2}+9}{2\left(9-x^{2}\right)}$.
(i) Find the vertical and slant asymptotes if any.
(ii) Determine the intervals in which $f$ is increasing/decreasing.
(iii) Find the points of local maximum and local minimum.
(iv) Find the intervals of convexity/concavity and point of inflection.
(v) Sketch the graph.

Solution: Vertical asymptotes: $x= \pm 3$.
Observe that $\frac{2 x^{3}-x^{2}+9}{2\left(9-x^{2}\right)}=\left(-x+\frac{1}{2}\right)+\frac{9 x}{9-x^{2}}$
Note that $y=-x+\frac{1}{2}$ is a slant asymptote.
$f^{\prime}(x)=\frac{x^{2}\left(27-x^{2}\right)}{\left(9-x^{2}\right)^{2}}$. So $f$ is increasing on $(-3 \sqrt{3},-3) \cup(-3,3) \cup(3,3 \sqrt{3})$ and decreasing $|x|>3 \sqrt{3}$.
Critical points $\pm 3 \sqrt{3}$. Local max at $3 \sqrt{3}$ and local minimum at $-3 \sqrt{3}$. [1] $f^{\prime \prime}(x)=\frac{18 x\left(x^{2}+27\right)}{\left(9-x^{2}\right)^{3}}$. Convex on $(-\infty,-3) \cup(0,3)$ and concave on $(-3,0) \cup$ $(3, \infty)$.
0 is the point of inflection
(b) Let $f:[0,1] \rightarrow \mathbb{R}$. Suppose for each $x \in[0,1]$ there exists $y \in[0,1]$ such that $|f(y)| \leq|f(x)|$. Show that there is a sequence $\left(x_{n}\right)$ in $[0,1]$ such that $\left(\left|f\left(x_{n}\right)\right|\right)$ converges.
Solution: Find $\left(x_{n}\right)$ such that $\cdots \leq\left|f\left(x_{n}\right)\right| \cdots \leq\left|f\left(x_{2}\right)\right| \leq\left|f\left(x_{1}\right)\right|$.
Since $\left(\left|f\left(x_{n}\right)\right|\right)$ is decreasing and bounded below by 0 , it converges.

