QUIZ-2, 23-11-2020
 MTH-101A

(1) Let $A:\left\{(x, y) \in \mathbb{R}^{2}: x \geq 0\right.$ and $\left.y \in \mathbb{R}\right\}$ and $f: A \rightarrow \mathbb{R}$ be the function defined as

$$
f(x, y)= \begin{cases}x y \sin (x y) & \text { if } x \geq 0 \text { and } y \geq 0 \\ -x y \sin (x y) & \text { if } x \geq 0 \text { and } y<0\end{cases}
$$

Determine the points on A where f is continuous.
(2) Let $f(x, y)=\frac{1}{2}(| | x|-|y||-|x|-|y|)-x y$.
(a) Does the directional derivative of f exist at $(0,0)$ in the direction $\left(\frac{3}{5}, \frac{4}{5}\right)$? Justify your answer.
(b) Is f differentiable at $(0,0)$? Justify your answer.
(3) Let S be the solid obtained by revolving the region bounded by the curves $f_{1}(x)=x^{2}-4$ and $f_{2}(x)=4-x^{2}$ about the line $x=2$. Using the shell method determine the volume of the solid S.

Solutions:

(1) Case 1: Let $x=0$ or $y=0$.

Suppose $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$.
Then $\left|f\left(x_{n}, y_{n}\right)-f(x, y)\right|=\left|f\left(x_{n}, y_{n}\right)\right| \leq\left|x_{n} y_{n}\right| \rightarrow 0$.
Hence f is continuous at (x, y).
Case 2: Let $x>0$ and $y>0$.
Suppose $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$.
Then $x_{n}>0$ and $y_{n}>0$ eventually and $\left|f\left(x_{n}, y_{n}\right)-f(x, y)\right|=\left|x_{n} y_{n} \sin \left(x_{n} y_{n}\right)-x y \sin (x y)\right| \rightarrow 0$.
Hence f is continuous at (x, y).
Case 3: Let $x>0$ and $y>0$.
This case is similar to Case 1 .
Therefore f is continuous at points of A.
(2) Note that $\frac{f\left(t \frac{3}{5}, t \frac{4}{5}\right)-f(0,0)}{t}=\frac{|t|}{2 t}\left\{| | \frac{3}{5}\left|-\left|\frac{4}{5}\right|\right|-\left|\frac{3}{5}\right|-\left|\frac{4}{5}\right|\right\}-t \frac{3}{5} \cdot \frac{4}{5}$.

Hence $\lim _{t \rightarrow 0} \frac{f\left(t \frac{3}{5}, t \frac{4}{5}\right)-f(0,0)}{t}$ does not exist.
Since the directional directive of f at $(0,0)$ in a direction does not exist, f is NOT differentiable at $(0,0)$.
$\begin{array}{rlr}\text { (3) Volume } & =\int_{-2}^{2} 2 \pi(2-x)\left(\left(4-x^{2}\right)-\left(x^{2}-4\right)\right) d x \\ \text { Volume } & =\frac{256 \pi}{3} . & {[2+2]}\end{array}$

