(1) Let \(A : \{ (x, y) \in \mathbb{R}^2 : x \geq 0 \text{ and } y \in \mathbb{R} \} \) and \(f : A \to \mathbb{R} \) be the function defined as

\[
f(x, y) = \begin{cases}
xy \sin(xy) & \text{if } x \geq 0 \text{ and } y \geq 0 \\
-xy \sin(xy) & \text{if } x \geq 0 \text{ and } y < 0
\end{cases}
\]

Determine the points on \(A \) where \(f \) is continuous.

(2) Let \(f(x, y) = \frac{1}{2}||x| - |y|| - |x| - |y|| - xy. \)

(a) Does the directional derivative of \(f \) exist at \((0, 0)\) in the direction \((\frac{3}{5}, \frac{4}{5})\)? Justify your answer.

(b) Is \(f \) differentiable at \((0, 0)\)? Justify your answer.

(3) Let \(S \) be the solid obtained by revolving the region bounded by the curves \(f_1(x) = x^2 - 4 \) and \(f_2(x) = 4 - x^2 \) about the line \(x = 2 \). Using the shell method determine the volume of the solid \(S \).

Solutions:

(1) \textbf{Case 1:} Let \(x = 0 \) or \(y = 0 \).

Suppose \(x_n \to x \) and \(y_n \to y. \)

Then \(|f(x_n, y_n) - f(x, y)| = |f(x_n, y_n)| \leq |x_n y_n| \to 0. \)

Hence \(f \) is continuous at \((x, y)\). \[2\]

\textbf{Case 2:} Let \(x > 0 \) and \(y > 0 \).

Suppose \(x_n \to x \) and \(y_n \to y. \)

Then \(x_n > 0 \) and \(y_n > 0 \) eventually and

\[
|f(x_n, y_n) - f(x, y)| = |x_n y_n \sin(x_n y_n) - x y \sin(xy)| \to 0.
\]

Hence \(f \) is continuous at \((x, y)\). \[2\]

\textbf{Case 3:} Let \(x > 0 \) and \(y > 0 \).

This case is similar to Case 1.

Therefore \(f \) is continuous at points of \(A \). \[1\]

(2) Note that

\[
\frac{f(t^\frac{3}{5}, t^\frac{4}{5}) - f(0, 0)}{t} = \frac{|t| \left|| \frac{3}{5} - \frac{4}{5} \right|| - \left| -\frac{3}{5} - \frac{4}{5} \right|| - \left| -\frac{3}{5} - \frac{4}{5} \right|}{t} = \frac{3}{5} \frac{4}{5}.
\]

Hence \(f(t^\frac{3}{5}, t^\frac{4}{5}) - f(0, 0) \) does not exist. \[3\]

Since the directional directive of \(f \) at \((0, 0)\) in a direction does not exist, \(f \) is NOT differentiable at \((0, 0)\). \[2\]
(3) Volume = \[\int_{-2}^{2} 2\pi (2 - x)((4 - x^2) - (x^2 - 4))dx \]

Volume = \[\frac{256\pi}{4} \].