MTH 101 AA Quiz 2

Tentative Marking scheme

1. Discuss the convergence or divergence of the improper integral

$$
\int_{0}^{2} \frac{x\left(1+\sin ^{2} x\right)}{2-x} d x
$$

Solution :

Let $g(x)=\frac{1}{2-x}$ and $f(x)=\frac{x\left(1+\sin ^{2} x\right)}{2-x}$.
Observe that $\lim _{x \rightarrow 2} \frac{f(x)}{g(x)}=2\left(1+\sin ^{2} 2\right) \neq 0$.
As $\int_{0}^{2} \frac{1}{2-x} d x$ diverges, by the LCT, $\int_{0}^{2} f(x) d x$ diverges.
(Note that if $I=\int_{0}^{2} \frac{1}{2-x} d x$, then $I=\int_{0}^{2} \frac{1}{t} d t$)
OR
Note that $f(x) \geq \frac{x}{2-x}=h(x)$.
Observe that $\lim _{x \rightarrow 2} \frac{h(x)}{g(x)}=2 \neq 0$.
As $\int_{0}^{2} \frac{1}{2-x} d x$ diverges, by the LCT, $\int_{0}^{2} h(x) d x$ diverges.
Hence $\int_{0}^{2} f(x) d x$ diverges.
2. Let $f:[0,1] \rightarrow \mathbb{R}$ be a differentiable function such that $\int_{0}^{1} f(t) d t=1$ and $f(0)=0$. Show that there exists $c \in(0,1)$ such that $f^{\prime}(c)=2$. [5]
Solution
Let $F(x)=\int_{0}^{x} f(t) d t$.
By EMVT, $F(1)=F(0)+F^{\prime}(0)+\frac{F^{\prime \prime}(c)}{2}$ for some $c \in(0,1)$
Note that $F(1)=1, F^{\prime}(0)=f(0)=0, F(0)=0$ and $F^{\prime \prime}(x)=f^{\prime}(x) \quad[1]$
3. Let R be the region bounded by the y-axis, the line $y=2 x$ and the curve $y=3-x^{2}$. Let S_{1} be the solid obtained by revolving R about the x-axis and S_{2} be the solid obtained by revolving R about the line $y=-1$. Find the volume of S_{1} by the Washer Method and the volume of S_{2} by the Shell Method.

The point of intersection of $y=3-x^{2}$ with the y - axis is $(0,3)$ and the point of intersection of $y=3-x^{2}$ with the line $y=2 x$ is $(1,2)$.
Volume of $S_{1}=\int_{0}^{1} \pi\left(\left(3-x^{2}\right)^{2}-(2 x)^{2}\right) d x$
Volume of $S_{1}=\frac{88 \pi}{15}$.
Volume of $S_{2}=\int_{0}^{2} 2 \pi(y+1) \frac{y}{2} d y+\int_{2}^{3} 2 \pi(y+1) \sqrt{3-y} d y$
Volume of $S_{2}=\frac{46 \pi}{5}$.

