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Lecture 2 : Convergence of a Sequence, Monotone sequences

In less formal terms, a sequence is a set with an order in the sense that there is a first element,
second element and so on. In other words for each positive integer 1,2,3, . . . , we associate an
element in this set. In the sequel, we will consider only sequences of real numbers.

Let us give the formal definition of a sequence.

Definition : A function f : {1, 2, 3, . . .} → R is called a sequence of real numbers. We write
f(n) = xn, then the sequence is denoted by x1, x2, . . ., or simply by (xn). We call xn the nth term
of the sequence or the value of the sequence at n.

Some examples of sequences:

1. (n) = 1, 2, 3, . . .

2. ( 1
n) = 1, 12 ,

1
3 , . . .

3. ( (−1)
n

n ) = −1, 12 ,
−1
3 , . . .

4. (1− 1
n) = 0, 1− 1

2 , 1−
1
3 , . . .

5. (1 + 1
10n ) = 1.1, 1.01, 1.001, . . .

6. ((−1)n) = −1,+1,−1,+1, . . .

Before giving the formal definition of convergence of a sequence, let us take a look at the
behaviour of the sequences in the above examples.

The elements of the sequences ( 1
n), (1−1/n) and (1 + 1/10n) seem to “approach” a single point

as n increases. In these sequences the values are either increasing or decreasing as n increases,
but they “eventually approach” a single point. Though the elements of the sequence ((−1)n/n)
oscillate, they “eventually approach” the single point 0. The common feature of these sequences
is that the terms of each sequence “accumulate” at only one point. On the other hand, values of
the sequence (n) become larger and larger and do not accumulate anywhere. The elements of the
sequence ((−1)n) oscillate between two different points −1 and 1; i.e., the elements of the sequence
come close to −1 and 1 “frequently” as n increases.

Convergence of a Sequence

Let us distinguish sequences whose elements approach a single point as n increases (in this
case we say that they converge) from those sequences whose elements do not. Geometrically, it
is clear that if the elements of the sequence (xn) come eventually inside every ε-neighbourhood
(x0 − ε, x0 + ε) of x0 then (xn) approaches x0.

Let us now state the formal definition of convergence.

Definition : We say that a sequence (xn) converges if there exists x0 ∈ IR such that for every
ε > 0, there exists a positive integer N (depending on ε) such that

xn ∈ (x0 − ε, x0 + ε) (or |xn − x0| < ε) for all n ≥ N.
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It can be easily verified that if such a number x0 exists then it is unique. In this case, we say
that the sequence (xn) converges to x0 and we call x0 the limit of the sequence (xn). If x0 is the
limit of (xn), we write lim

n→∞
xn = x0 or xn → x0.

Examples : 1. Let us show that the sequence ( 1
n) in Example 1 has limit equal to 0. For arbitrary

ε > 0, the inequality

|xn| =
1

n
< ε

is true for all n > 1
ε and hence for all n > N, where N is any natural number such that N > 1

ε .
Thus for any ε > 0, there is a natural number N such that |xn| < ε for every n ≥ N .

2. The sequence in Example 4 converges to 1, because in this case

|1− xn| = |1−
n− 1

n
| = 1

n
≤ ε

for all n > N where N is any natural number greater than 1
ε .

Remark: The convergence of each sequence given in the above examples is verified directly from
the definition. In general, verifying the convergence directly from the definition is a difficult task.
We will see some methods to find limits of certain sequences and some sufficient conditions for the
convergence of a sequence.

The following three results enable us to evaluate the limits of many sequences.

Limit Theorems

Theorem 2.1: Suppose xn → x and yn → y. Then

1. xn + yn → x+ y

2. xnyn → xy

3. xn
yn
→ x

y if y 6= 0 and yn 6= 0 for all n.

Example : Let xn = 1
12+1

+ 1
22+2

+ · · ·+ 1
n2+n

. Then xn = 1− 1
2 + 1

2 −
1
3 + · · ·+ 1

n −
1

n+1 → 1

Theorem 2.2 : (Sandwich Theorem) Suppose that (xn), (yn) and (zn) are sequences such that
xn ≤ yn ≤ zn for all n and that xn → x0 and zn → x0. Then yn → x0.

Proof: Let ε > 0 be given. Since xn → x0 and zn → x0, there exist N1 and N2 such that

xn ∈ (x0 − ε, x0 + ε) for all n ≥ N1

and
zn ∈ (x0 − ε, x0 + ε) for all n ≥ N2.

Choose N = max{N1, N2}. Then, since xn ≤ yn ≤ zn, we have

yn ∈ (x0 − ε, x0 + ε) for all n ≥ N.

This proves that yn → x0. �

Examples : 1. Since −1n ≤
sinn
n ≤

1
n , by sandwich theorem sinn

n → 0.
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2. Let yn = n2

n3+n+1
+ n2

n3+n+2
+ · · ·+ n2

n3+2n
. Then n.n2

n3+2n
≤ yn ≤ n.n2

n3+n+1
and hence yn → 1.

3. Let x ∈ R and 0 < x < 1. We show that xn → 0. Write x = 1
1+a for some a > 0. Then by

Bernoulli’s inequality, 0 < xn = 1
(1+a)n ≤

1
1+na <

1
na . By sandwich theorem xn → 0.

4. Let x ∈ R and x > 0. We show that x
1
n → 1. Suppose x > 1 and x

1
n = 1 + dn for some dn > 0.

By Bernoulli’s inequality, x = (1 + dn)n > 1 + ndn > ndn which implies that 0 < dn <
x
n for all

n ∈ N. By sandwich theorem dn → 0 and hence x
1
n → 1. If 0 < x < 1, let y = 1

x so that y
1
n → 1

and hence x
1
n → 1.

5. We show that n
1
n → 1. Let n

1
n = 1 + kn for some kn > 0 when n > 1. Hence n = (1 + kn)n > 1

for n > 1. By Binomial theorem, if n > 1, n ≥ 1 + 1
2n(n − 1)k2n. Therefore n − 1 ≥ 1

2n(n − 1)k2n
and hence k2n ≤ 2

n . By sandwich theorem kn → 0 and therefore n
1
n → 1.

The following result, called ratio test for sequences, can be applied to certain type of sequences
for convergence.

Theorem 2.3: Let (xn) be a sequence of real numbers such that xn > 0 for all n and lim
n→∞

xn+1

xn
= λ.

Then

1. if λ < 1 then lim
n→∞

xn = 0,

2. if λ > 1 then lim
n→∞

xn =∞.

Proof : 1. Since λ < 1, we can find an r such that λ < r < 1. As lim
n→∞

xn+1

xn
= λ, there exists n0

such that xn+1

xn
< r for all n ≥ n0. Hence,

0 < xn+n0 < rxn+n0−1 < r2xn+n0−2 < · · · < rnxn0 .

Note that lim
n→∞

rn = 0 as 0 < r < 1. So by the sandwich theorem xn → 0.

2. Since λ > 1, we can find r ∈ R, such that 1 < r < λ. Arguing along the same lines as in
1., we get n0 ∈ N, such that xn+1 > rxn for all n ≥ n0. Similarly, xn+n0 > rnxn0 . Since r > 1,
lim
n→∞

rn =∞ and therefore lim
n→∞

xn =∞. �

Examples : 1. Let xn = n
2n and yn = 2n

n! . Then xn → 0 as lim
n→∞

xn+1

xn
= 1

2 . We do similarly for yn.

2. Let xn = nyn−1 for some y ∈ (0, 1). Since lim
n→∞

xn+1

xn
= y, xn → 0.

3. Let xn = ns

(1+p)n for some s > 0 and p > 0. Repeat the argument as in the previuos problem and
show that xn → 0.

4. Let b > 1 and xn = bn

n2 . Then lim
n→∞

xn+1

xn
= b. Therefore, lim

n→∞
xn =∞.

5. In the previous theorem if λ = 1 then we cannot make any conclusion. For example, consider
the sequences (n), ( 1

n) and (2 + 1
n).

In the previous results we could guess the limit of a sequence by comparing the given sequence
with some other sequences whose limits are known and then we could verify that our guess is
correct. We now give a simple criterion for the convergence of a sequence (without having any
knowledge of its limit).



4

Before presenting a criterion (a sufficient condition), let us see a necessary condition for the
convergence of a sequence.

Theorem 2.4: Every convergent sequence is a bounded sequence, that is the set {xn : n ∈ N} is
bounded.

Proof : Suppose a sequence (xn) converges to x. Then, for ε = 1, there exist N such that

|xn − x| ≤ 1 for all n ≥ N.

This implies |xn| ≤ |x|+ 1 for all n ≥ N . If we let

M = max{|x1|, |x2|, . . . , |xN−1|},

then |xn| ≤M + |x|+ 1 for all n. Hence (xn) is a bounded sequence. �

Remark : The condition given in the previous result is necessary but not sufficient. For example,
the sequence ((−1)n) is a bounded sequence but it does not converge.

One naturally asks the following question:

Question : Boundedness + (??) ⇒ Convergence.

We now find a condition on a bounded sequence which ensures the convergence of the sequence.

Monotone Sequences

Definition : We say that a sequence (xn) is increasing if xn ≤ xn+1 for all n and strictly increasing
if xn < xn+1 for all n. Similarly, we define decreasing and strictly decreasing sequences. Sequences
which are either increasing or decreasing are called monotone.

The following result is an application of the least upper bound property of the real number
system.

Theorem 2.5: Suppose (xn) is a bounded and increasing sequence. Then the least upper bound of
the set {xn : n ∈ N} is the limit of (xn).

Proof: Suppose sup
n
xn = M . Then for given ε > 0, there exists n0 such that M − ε ≤ xn0 . Since

(xn) is increasing, we have xn0 ≤ xn for all n ≥ n0. This implies that

M − ε ≤ xn ≤M ≤M + ε for all n ≥ n0.

That is xn →M . �

For decreasing sequences we have the following result and its proof is similar.

Theorem 2.6: Suppose (xn) is a bounded and decreasing sequence. Then the greatest lower bound
of the set {xn : n ∈ N} is the limit of (xn).

Examples: 1. Let x1 =
√

2 and xn =
√

2 + xn−1 for n > 1. Then use induction to see that
0 ≤ xn ≤ 2 and (xn) is increasing. Therefore, by previous result (xn) converges. Suppose xn → λ.
Then λ =

√
2 + λ. This implies that λ = 2.

2. Let x1 = 8 and xn+1 = 1
2xn + 2. Note that xn+1

xn
< 1. Hence the sequence is decreasing.

Since xn > 0, the sequence is bounded below. Therefore (xn) converges. Suppose xn → λ. Then
λ = λ

2 + 2. Therefore, λ = 2.


