Lecture 22: Areas of surfaces of revolution, Pappus’s Theorems

Let \(f : [a, b] \to \mathbb{R} \) be continuous and \(f(x) \geq 0 \). Consider the curve \(C \) given by the graph of the function \(f \). Let \(S \) be the surface generated by revolving this curve about the x-axis. We will define the surface area of \(S \) in terms of an integral expression.

Consider a partition \(P : a = x_0 < x_1 < x_2 < \ldots < x_n = b \) and consider the points \(P_i = (x_i, f(x_i)), i = 0, 1, 2, \ldots, n \). Join these points by straight lines as shown in Figure 1. Consider the segment \(P_{i-1}P_i \). The area \(A \) of the surface generated by revolving this segment about the x-axis is \(\pi(f(x_{i-1}) + f(x_i))\ell_i \) where \(\ell_i \) is the length of the segment \(P_{i-1}P_i \). This can be verified as follows. Note that the area \(A = \pi f(x_i)\alpha f(x_i) - \pi f(x_{i-1})\alpha f(x_{i-1}) \) (see Figure 2). Since

\[
\frac{\ell}{f(x_{i-1})} = \frac{\ell + \ell_i}{f(x_i) - f(x_{i-1})} = \alpha
\]

for some \(\alpha \), the area

\[
A = \pi f(x_i)\alpha f(x_i) - \pi f(x_{i-1})\alpha f(x_{i-1}) = \pi \alpha f(x_i) + f(x_{i-1}) (f(x_i) - f(x_{i-1})) = \pi \ell_i (f(x_{i-1}) + f(x_i)).
\]

The sum of the areas of the surfaces generated by the line segments is

\[
\sum_{i=1}^{n} \pi f(x_{i-1}) + f(x_i)\ell_i = \sum_{i=1}^{n} \pi f(x_{i-1}) \sqrt{(\Delta x_i)^2 + (\Delta y_i)^2} + \sum_{i=1}^{n} \pi f(x_i) \sqrt{(\Delta x_i)^2 + (\Delta y_i)^2}
\]

where \(\Delta y_i = f(x_i) - f(x_{i-1}) \). If \(f' \) is continuous, one can show that each of the sum given in the RHS of the above equation converges to \(\int_{a}^{b} \pi f(x) \sqrt{1 + (f'(x))^2} \, dx \) as \(\| P \| \to 0 \). In view of this we define the surface area generated by revolving the curve about the x-axis to be

\[
\int_{a}^{b} 2\pi f(x) \sqrt{1 + (f'(x))^2} \, dx.
\]

In case \(f(x) \leq 0 \), the formula for the area is \(\int_{a}^{b} 2\pi | f(x) | \sqrt{1 + (f'(x))^2} \, dx \).

Example: Let us find the area of the surface generated by revolving the curve \(y = \frac{1}{2}(x^2 + 1), 0 \leq x \leq 1 \) about the y-axis. Here the function \(y \) is increasing hence it is one-one and onto. Hence we can
write \(x \) in terms of \(y \): \(x = g(x) = \sqrt{2y - 1} \). In this case the formula is
\[
\int_a^b 2\pi |g(y)| \sqrt{1 + (g'(y))^2} \, dy
\]
where \(a = 1/2 \) and \(b = 1 \).

Parametric case: If the curve is given in the parametric form \(\{(x(t), y(t)) : t \in [a, b]\} \), and \(x' \) and \(y' \) are continuous, then the surface area generated is
\[
\int_a^b 2\pi \rho(t) \sqrt{(x'(t))^2 + (y'(t))^2} \, dt
\]
where \(\rho(t) \) is the distance between the axis of revolution and the curve.

Example: The curve \(x = t + 1, \ y = t^2 + t, \ 0 \leq t \leq 4 \) is rotated about the y-axis. Let us find the surface area generated. The surface area is
\[
\int_0^4 2\pi |t + 1| \sqrt{1 + (1 + t)^2} dt.
\]

Polar case: If the curve is given in the polar form, the surface area generated by revolving the curve about the x-axis is
\[
\int_a^b 2\pi y \sqrt{r^2 + (dr/d\theta)^2} \, d\theta = \int_a^b 2\pi r(\theta) \sin \theta \sqrt{r^2 + (dr/d\theta)^2} \, d\theta.
\]

Example: The lemniscate \(r^2 = 2a^2 \cos 2\theta \) is rotated about the x-axis. Let us find the area of the surface generated. A simple calculation shows that
\[
\sqrt{r^2 + (dr/d\theta)^2} = 2a^2 / r.
\]
The curve is given in the notes of the previous lecture. The surface area is
\[
2 \int_0^{\pi/4} 2\pi \sin 2\theta \, d\theta = 8\pi a^2 (1 - 1/\sqrt{2}).
\]

Pappus’s Theorems: There are two results of Pappus which relate the centroids to surfaces and solids of revolutions. The first result relates the centroid of a plane region with the volume of the solid of revolution generated by it.

Theorem: Let \(R \) be a plane region. Suppose \(R \) is revolved about the line \(L \) which does not cut through the interior of \(R \), then the volume of the solid generated is
\[
V = 2\pi \rho A
\]
where \(\rho \) is the distance from the axis of revolution to the centroid and \(A \) is the area of the region \(R \) (see Figure 3).

Note that in the above formula \(2\pi \rho \) is the distance traveled by the centroid during the revolution. The second result relates the centroid of a plane curve with the area of the surface of revolution generated by the curve.

Theorem: Let \(C \) be a plane curve. Suppose \(C \) is revolved about the line \(L \) which does not cut through the interior of \(C \), then the area of the surface generated is
\[
S = 2\pi \rho L
\]
where \(\rho \) is the distance from the axis of revolution to the centroid and \(L \) is the length of the curve \(C \) (see Figure 3).

Example: Use a theorem of Pappus to find the centroid of the semi circular arc \(y = \sqrt{r^2 - x^2}, \ -r \leq x \leq r \). If the arc is revolved about the line \(y = r \), find the volume of the surface area generate.

Solution: We know the surface area generated by the curve \(4\pi r^2 \) (see Figure 4). Let the centroid of the curve be \((0, \overline{y}) \). By Pappus theorem \(4\pi r^2 = 2\pi \overline{y} \pi r \) which implies that \(\overline{y} = \frac{2r}{\pi} \). Again by Pappus theorem, the area of the surface generated by revolving the curve around \(y = r \) is
\[
2\pi (r - \overline{y}) \pi r = 2\pi r^2 (\pi - 2).
\]