Lecture 34: Change of Variable in a Triple Integral; Area of a Parametric Surface

The change of variable formula for a double integral can be extended to triple integrals. We will straightaway present the formula.

Formula: \(\iiint_S f(x, y, z) dx dy dz = \iiint_T f(X(u, v, w), Y(u, v, w), Z(u, v, w)) | J(u, v, w) | du dv dw \)

where the Jacobian determinant \(J(u, v, w) \) is defined as follows:

\[
J(u, v, w) = \left| \begin{array}{ccc}
\frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & \frac{\partial Z}{\partial u} \\
\frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & \frac{\partial Z}{\partial v} \\
\frac{\partial X}{\partial w} & \frac{\partial Y}{\partial w} & \frac{\partial Z}{\partial w}
\end{array} \right|.
\]

The above formula is valid under some assumptions which are similar to the assumptions we had for the two dimensional case.

Special cases: 1. Cylindrical coordinates. In this case the variables \(x, y \) and \(z \) are changed to \(r, \theta \) and \(z \) by the following three equations:

\[
x = X(r, \theta) = r \cos \theta, \quad y = Y(r, \theta) = r \sin \theta \quad \text{and} \quad z = z.
\]

We assume that \(r > 0 \) and \(\theta \) lies in \([0, 2\pi)\) or \(\theta_0 \leq \theta < \theta_0 + 2\pi \) for some \(\theta_0 \) as in the double integral case. We have basically replaced \(x \) and \(y \) by their polar coordinates in the \(xy \) plane and left \(z \) unchanged. The Jacobian is

\[
J(u, v, z) = \begin{vmatrix}
\cos \theta & \sin \theta & 0 \\
-r \sin \theta & r \cos \theta & 0 \\
0 & 0 & 1
\end{vmatrix} = r(\cos^2 \theta + \sin^2 \theta) = r.
\]

Therefore the change of variable formula is \(\iiint_S f(x, y, z) dx dy dz = \iiint_T f(r \cos \theta, r \sin \theta, z) r dr d\theta dz \).

Example 1: Let us evaluate \(\iiint_D (z^2 x^2 + z^2 y^2) dx dy dz \) where \(D \) is the region determined by \(x^2 + y^2 \leq 1, -1 \leq z \leq 1 \). Note that we can describe \(D \) in cylindrical coordinates: \(0 \leq r \leq 1, 0 \leq \theta \leq 2\pi, -1 \leq z \leq 1 \). Therefore,

\[
\iiint_D (z^2 x^2 + z^2 y^2) dx dy dz = \frac{1}{2\pi} \int_0^{2\pi} \int_{-1}^1 (z^2 r^2) r dr dz = \frac{1}{2\pi} \int_{-1}^1 z^2 dV = \frac{4}{3}.
\]

2 Spherical Coordinates: Suppose \((x, y, z)\) be a point \(\mathbb{R}^3 \). We will represent this point in terms of spherical coordinates \((r, \theta, \phi)\). The coordinates \(r, \theta \) and \(\phi \) are defined below.

Given a point \((x, y, z)\), let \(r = \sqrt{x^2 + y^2 + z^2} \) and \(\phi \) is the angle that the position vector \(xi + yj + zk \) makes with the (positive side of the) \(z \)-axis. The coordinate of \(z \) is given by \(z = r \cos \phi \).

To represent \(x \) and \(y \) in terms of spherical coordinates, represent \(x \) and \(y \) by polar coordinates in the \(xy \)-plane: \(x = r \cos \theta \) and \(y = r \sin \theta \). Since \(r = \rho \sin \phi \), the point \((x, y, z)\) is represented in terms of the spherical coordinates \((r, \theta, \phi)\) as follows:

\[
x = r \sin \phi \cos \theta, \quad y = r \sin \phi \sin \theta, \quad z = r \cos \phi.
\]

We keep \(r > 0, 0 \leq \theta < 2\pi \) and \(0 \leq \phi < \pi \) to get a one-one mapping. The Jacobian determinant is \(J(r, \theta, \phi) = r^2 \sin \phi \). Since \(\sin \phi \geq 0 \), we have \(|J(r, \theta, \phi)| = r^2 \sin \phi \) and the change of variable formula is

\[
\iiint_S f(x, y, z) dx dy dz = \iiint_T f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^2 \sin \phi \, d\rho d\theta d\phi.
\]

Example 2: Let \(D = \{(x, y, z) : x^2 + y^2 + z^2 \leq 4a^2, \quad z \geq a\} \). Let us evaluate \(\iiint_D (z^2 x^2 + z^2 y^2) r^2 dz dV \).

We will use the spherical coordinates to solve this problem. If we allow \(\phi \) to vary independently,
then \(\phi \) varies from 0 to \(\pi \) (see Figure 2). If we fix \(\phi \) and allow \(\theta \) to vary from 0 to \(2\pi \) then we obtain a surface of a cone (see Figure 1). Since only a part of the cone is lying in the given region, for a fixed \(\phi \) and \(\theta \), \(\rho \) varies from \(a \sec \phi \) to \(2a \) (see Figure 1). Therefore the integral is

\[
\int_0^{2\pi} \int_0^a \cos \phi \ | J(\rho, \theta, \phi) | \ d\rho d\phi = 2\pi \int_0^a (2a \sin \phi \cos \phi - a \sin \phi) d\phi = \frac{\pi a}{2}.
\]

Parametric Surfaces: We defined a parametric curve in terms of a continuous vector valued function of one variable. We will see that a continuous vector valued function of two variables is associated with a surface, called parametric surface.

Let \(T \) be a region in \(\mathbb{R}^2 \) and \(r(u, v) = X(u, v)i + Y(u, v)j + Z(u, v)k \) be a continuous function on \(T \). The range of \(r \), \(\{ r(u, v) : (u, v) \in T \} \) is called a parametric surface (with the parameter domain \(T \) and the parameters \(u \) and \(v \)). We assume that the map \(r \) is one-one in the interior of \(T \) so that the surface does not cross itself. Sometimes the surface defined by \(r(u, v) \) is also expressed as

\[
x = X(u, v), \quad y = Y(u, v), \quad z = Z(u, v)
\]

where \((u, v) \in T \)

and the above equations are called parametric equations of the surface.

Examples:

1. For a constant \(a > 0 \), \(0 \leq \theta \leq 2\pi \) and \(0 \leq \phi \leq \pi \) the equations \(x = a \sin \phi \cos \theta \), \(y = a \sin \phi \sin \theta \), \(z = a \cos \phi \) represent a sphere. Here the parameters are \(\theta \) and \(\phi \).

2. For a fixed \(a \), \(\infty < t < \infty \), \(0 \leq \theta \leq 2\pi \), the equations \(x = a \cos \theta \), \(y = a \sin \theta \), \(z = t \) represent a cylinder. Here the parameters are \(t \) and \(\theta \).

3. A cone is represented by \(r(u, v) = \rho \sin \alpha \cos \theta i + \rho \sin \alpha \sin \theta j + \rho \cos \alpha k \) where \(\rho \geq 0 \), \(0 \leq \theta \leq 2\pi \) and \(\alpha \) is fixed. Here the parameters are \(\rho \) and \(\theta \).

Area of a Parametric Surface: Let \(S = r(u, v) \) be a parametric surface defined on a parameter domain \(T \). Suppose \(r_u \) and \(r_v \) are continuous on \(T \) and \(r_u \times r_v \) is never zero on \(T \). Then the area of \(S \), denoted by \(a(S) \), is defined by the double integral

\[
a(S) = \iint_T || \frac{\partial r}{\partial u} \times \frac{\partial r}{\partial v} || \ du dv.
\]

The formula can be justified as follows. Consider a small rectangle \(\Delta A \) in \(T \) with the sides on the lines \(u = u_0 \), \(u = u_0 + \Delta u \), \(v = v_0 \) and \(v = v_0 + \Delta v \). Consider the corresponding patch in \(S \), that is \(r(\Delta A) \). Note that the sides of \(\Delta A \) are mapped to the boundary curves of the patch \(r(\Delta A) \) by the map \(r \). The vectors \(r_u(u_0, v_0) \) and \(r_v(u_0, v_0) \) are tangents to the boundary curves of \(r(\Delta A) \) meeting at \(r(u_0, v_0) \). We now approximate the surface patch \(r(\Delta A) \) by the parallelogram whose sites are determined by the vectors \(\Delta ur_u \) and \(\Delta vr_v \). The area of this parallelogram is \(| r_u \times r_v | \Delta u \Delta v \). This will lead to the Riemann sum corresponding to the double integral \(\iint_T || \frac{\partial r}{\partial u} \times \frac{\partial r}{\partial v} || \ du dv \).