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Uniform Continuity

Let us first review the notion of continuity of a function. Let A ⊂ IR and f : A → IR be
continuous. Then for each x0 ∈ A and for given ε > 0, there exists a δ(ε, x0) > 0 such that
xεA and | x− x0 |< δ imply | f(x)− f(x0) |< ε. We emphasize that δ depends, in general,
on ε as well as the point x0. Intuitively this is clear because the function f may change its
values rapidly near certain points and slowly near other points.

For example consider f(x) = 1/x. The following two figures explain that for a given
ε- neighbourhood about each of f(2) = 1/2 and f(1/2) = 2, the corresponding maximum
values of δ for the points 2 and 1/2 are seen to be different.
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We also see that as x0 tends to 0, the permissible values of δ tends to 0.

Example 1: Consider the function f : IR → IR defined by f(x) = x2 for all x ∈ IR. Suppose
ε = 2 and x0 = 1. Then f(x) − f(x0) = x2 − 1. If | x − 1 |< 1/2 then 1/2 < x < 3/2 and
so −3/4 < x2 − 1 < 5/4. Therefore with ε = 2 and x0 = 1, we have | x − x0 |< 1/2 imply
| f(x)− f(x0) |< 2. So δ = 1/2 works in this case.

We will now illustrate that the previous statement is not true for x0 = 10. For, when
x0 = 10 we have f(x) − f(x0) = x2 − 100. If x = 10 + 1/4 then | x − x0 |< 1/2 but
f(x) − f(x0) = (10 + 1/4)2 − 102 > 2. This shows that even though f is continuous at the
point 10 as well at the point 1, for ε = 2 the number δ = 1/2 works for x0 = 1 but not for
x0 = 10.

One may ask that for this f , corresponding to ε = 2, there might be some δ (possibly
depending on ε ) that will work for all x ∈ IR. We will show that the answer to this question
is negative. Suppose there is a δ > 0 such that for every x ∈ IR, we have:
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| x− y |< δ imply | f(x)− f(y) |< 2.

Let x ∈ IR and choose y = x + δ/2. Since | x− y |< δ, by assumption, we have

| f(x)− f(y) | = | x− y || x + y |
= δ/2 | 2x + δ/2 |
= | δx + δ2/4 |< 2

This implies that δx < 2 for all x ∈ IR+, the set of positive real numbers. This is clearly
false.

The next example shows that it is not always the case that δ is dependent upon x0εA.

Example 2 : Let A = {x ∈ IR : x ≥ 0} = [0,∞) ⊂ IR and f : A → IR be defined by

f(x) =
√

x.

It is easy to verify that for all x, y ∈ A, | f(x)− f(y) |=| √x−√y |≤
√
| x− y |. Therefore

for given ε > 0 if we choose δ = ε2. We have :

x, y ∈ A and | x− y |< δ imply | f(x)− f(y) |< ε.

The preceding discussion motivates the following definition.

Definition: A function f : A → IR, where A ⊂ IR is said to be uniformly continuous on
A if given ε > 0, there exists δ > 0 such that whenever x, y ∈ A and | x − y |< δ, we have
| f(x)− f(y) |< ε

Clearly uniform continuity implies continuity but the converse is not always true as seen
from Example 1.

In the previous definition we also emphasise that the uniform continuity of f is dependent
upon the function f and on the set A. For example, we had seen in Example 1 that the
function defined by f(x) = x2 is not uniformly continuous on IR or (a,∞) for all a ∈ IR.
Let A = [a, b], a > 0 and ε > 0. Then

| f(x)− f(y) |=| x2 − y2 |=| x− y || x + y |≤ 2b | x− y |

Hence for δ =
ε

2b
. We have

x, y ∈ IR, | x− y |< δ ⇒| f(x)− f(y) |< ε

Therefore f is uniformly continuous on [a, b].

Infact we illustrate that every continuous function on any closed bounded interval is
uniformly continuous.
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Let us formulate an equivalent condition to saying that f is not uniformly continuous on
A.

Let A ⊂ IR and let f : A → IR. Then the following conditions are equivalent.

(i) f is not uniformly condtion on A .

(ii) There exists an ε0 > 0 such that for every δ > 0 there are points x, y in A such that
| x− y |< δ and | f(x)− f(y) |≥ ε0.

(iii) There exist an ε0 > 0 and two sequences (xn) and (yn) in A such that lim(xn − yn) = 0
and | f(xn)− f(yn) |≥ ε0 for all n ∈ N .

Example 3: We can apply this result to show that g(x) :=
1

x
is not uniformly continuous

on A := {xεIR : x > 0}. For if xn :=
1

n
and yn :=

1

n + 1
, then we have lim(xn− yn) = 0 but

| g(xn)− g(yn) |= 1 for all n ∈ N .

As an immediate consequence of the previous observation, we have the following result
which provides us with a sequential criterion for uniform continuity.

Prososition 1: A function f : A → IR is uniformly continuous on a set A ⊂ IR if and
only if whenever sequences (xn) and (yn) of points A are such that the sequence (xn − yn)
converges to 0, the sequence f(xn)− f(yn) converges to 0.

Theorem 2: Let a < b and f : [a, b] → IR be continuous. Then f is uniformly continuous.

Proof: Assume the contrary that f is not uniformly continuous. Hence there exist an ε0 > 0
and two sequences (xn) and (yn) in [a, b] such that xn − yn → 0 and | f(xn) − f(yn) |≥ ε0

for all n ∈ N . Since (xn) is in [a, b], by Theorem 2.8, there exists a subsequence (xni) of
(xn) such that xni → x0 ∈ [a, b]. Hence yni → x0. By continuity of f , it follows that
f(xni) → f(x0) and f(yni) → f(x0). Therefore | f(xni)− f(yni) |→ 0. This contradicts the
fact that | f(xni)− f(yni) |≥ ε0. Therefore f is uniformly continuous.

Problems :

1. Let A ⊂ IR and f : A → IR be uniformly continuous on A. Show that if (xn) is a Cauchy
sequence in A then (f(xn)) is a Cauchy sequence in IR.

2. Using the previous problem show that the following functions are not uniformly continu-
ous.

(i) f(x) =
1

x2
, x ∈ (0, 1)

(ii) f(x) = tanx, x ∈ [0,
π

2
)


