Uniform Continuity

Let us first review the notion of continuity of a function. Let A C IR and f : A — IR be
continuous. Then for each zy € A and for given ¢ > 0, there exists a (e, z) > 0 such that
xeA and | x — xg |< § imply | f(x) — f(zo) |< €. We emphasize that ¢ depends, in general,
on € as well as the point xy. Intuitively this is clear because the function f may change its
values rapidly near certain points and slowly near other points.

For example consider f(z) = 1/x. The following two figures explain that for a given
e- neighbourhood about each of f(2) = 1/2 and f(1/2) = 2, the corresponding maximum
values of § for the points 2 and 1/2 are seen to be different.
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We also see that as xg tends to 0, the permissible values of § tends to 0.

Example 1: Consider the function f : IR — IR defined by f(x) = z? for all x € IR. Suppose
e=2and 2o = 1. Then f(z) — f(zo) =2 — 1. If | x — 1 |< 1/2 then 1/2 < 2 < 3/2 and
so —3/4 < #* — 1 < 5/4. Therefore with ¢ = 2 and zy = 1, we have | x — zo |< 1/2 imply
| f(z) — f(xo) |< 2. So § = 1/2 works in this case.

We will now illustrate that the previous statement is not true for xy = 10. For, when
o = 10 we have f(z) — f(zo) = 2> —100. If x = 10 + 1/4 then | z — ¢ |< 1/2 but
f(x) — f(zo) = (10 +1/4)* — 10> > 2. This shows that even though f is continuous at the
point 10 as well at the point 1, for ¢ = 2 the number § = 1/2 works for o = 1 but not for
Ty = 10.

One may ask that for this f, corresponding to € = 2, there might be some § (possibly
depending on ¢ ) that will work for all x € IR. We will show that the answer to this question
is negative. Suppose there is a 0 > 0 such that for every x € IR, we have:



|z —y |<dimply | f(z) — f(y) [< 2.

Let = € IR and choose y = x4+ ¢/2. Since | z — y |< 0, by assumption, we have

| f@)=f) | = lz—yllz+y]
= §/2| 20 +6/2 ]
= |dw+0%/4 <2

This implies that dz < 2 for all € IR", the set of positive real numbers. This is clearly
false.

The next example shows that it is not always the case that § is dependent upon xqeA.

Example 2 : Let A={z € IR: x>0} =1[0,00) C IR and f: A — IR be defined by

It is easy to verify that for all z,y € A, | f(z) — f(y) |=| vV — /¥y |< v/|  — y |. Therefore
for given € > 0 if we choose § = 2. We have :

z,y € Aand |z —y [<dimply | f(z) — f(y) [<e

The preceding discussion motivates the following definition.

Definition: A function f : A — IR, where A C IR is said to be uniformly continuous on
A if given £ > 0, there exists § > 0 such that whenever z,y € A and | z — y |< §, we have

| fl2) = fly) < e

Clearly uniform continuity implies continuity but the converse is not always true as seen
from Example 1.

In the previous definition we also emphasise that the uniform continuity of f is dependent
upon the function f and on the set A. For example, we had seen in Example 1 that the
function defined by f(x) = x? is not uniformly continuous on IR or (a,o0) for all a € IR.
Let A = [a,b],a >0 and € > 0. Then

[ f@) = fly) =l 2® =2 |=le—yllz+y|<2 |z —y]

Hence for 6 = % We have

v,y € IR [z —y|<d=|f(z)— fly)|<e

Therefore f is uniformly continuous on [a, b].

Infact we illustrate that every continuous function on any closed bounded interval is
uniformly continuous.



Let us formulate an equivalent condition to saying that f is not uniformly continuous on
A.

Let AC IR and let f: A — IR. Then the following conditions are equivalent.
(i) f is not uniformly condtion on A .

(ii) There exists an ¢y > 0 such that for every § > 0 there are points x,y in A such that
|z —y|<d and | f(z) = f(y) |= 2.

(iii) There exist an €y > 0 and two sequences (x,) and (y,) in A such that lim(x,, —y,) =0
and | f(xn) — f(yn) |> €0 for alln € N .
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Example 3: We can apply this result to show that g(z) := — is not uniformly continuous
x
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on A :={zelR : x> 0}. Forifx,:=— andy, := — then we have lim(z, — y,) = 0 but
n n

| g(zn) — g(yn) |=1 for alln € N.

As an immediate consequence of the previous observation, we have the following result
which provides us with a sequential criterion for uniform continuity.

Prososition 1: A function f : A — IR is uniformly continuous on a set A C IR if and
only if whenever sequences (x,) and (y,) of points A are such that the sequence (x, — y,)
converges to 0, the sequence f(x,) — f(yn) converges to 0.

Theorem 2: Leta < b and f : [a,b] — IR be continuous. Then f is uniformly continuous.

Proof: Assume the contrary that f is not uniformly continuous. Hence there exist an ¢y > 0
and two sequences (z,,) and (y,) in [a,b] such that z, —y, — 0 and | f(z,) — f(yn) |> €0
for all n € N. Since (z,) is in [a,b], by Theorem 2.8, there exists a subsequence (z,;) of
() such that z,; — xo € [a,b]. Hence y,; — x¢. By continuity of f, it follows that
f(zn;) — f(xo) and f(yn;) — f(x0). Therefore | f(zn;) — f(yn;) |— 0. This contradicts the
fact that | f(zn;) — f(Yn;) |> €0- Therefore f is uniformly continuous.

Problems :

1. Let A C IR and f : A — IR be uniformly continuous on A. Show that if (x,) is a Cauchy
sequence in A then (f(x,)) is a Cauchy sequence in IR.

2. Using the previous problem show that the following functions are not uniformly continu-
ous.

() f0)= 50

(i) f(z) =tanz,z € |0, g)



