Practice problems 1: The Real Number System

1. Let \(x_0 \in \mathbb{R} \) and \(x_0 \geq 0 \). If \(x_0 < \epsilon \) for every positive real number \(\epsilon \), show that \(x_0 = 0 \).

2. Prove Bernoulli’s inequality: for \(x > -1 \), \((1 + x)^n \geq 1 + nx \) for all \(n \in \mathbb{N} \).

3. Let \(E \) be a non-empty bounded above subset of \(\mathbb{R} \). If \(\alpha \) and \(\beta \) are supremums of \(E \), show that \(\alpha = \beta \).

4. Suppose that \(\alpha \) and \(\beta \) are any two real numbers satisfying \(\alpha < \beta \). Show that there exists \(n \in \mathbb{N} \) such that \(\alpha < \alpha + \frac{1}{n} < \beta \). Similarly, show that for any two real numbers \(s \) and \(t \) satisfying \(s < t \), there exists \(n \in \mathbb{N} \) such that \(s < t - \frac{1}{n} < t \).

5. Let \(A \) be a non-empty subset of \(\mathbb{R} \) and \(\alpha \in \mathbb{R} \) be an upper bound of \(A \). Suppose for every \(n \in \mathbb{N} \), there exists \(a_n \in A \) such that \(a_n \geq \alpha - \frac{1}{n} \). Show that \(\alpha \) is the supremum of \(A \).

6. Find the supremum and infimum of the set \(\left\{ \frac{-m}{|m|+n} : n \in \mathbb{N}, m \in \mathbb{Z} \right\} \).

7. Let \(E \) be a non-empty bounded above subset of \(\mathbb{R} \). If \(\alpha \in \mathbb{R} \) is an upper bound of \(E \) and \(\alpha \in E \), show that \(\alpha \) is the l.u.b. of \(E \).

8. Let \(x \in \mathbb{R} \). Show that there exists an integer \(m \) such that \(m \leq x < m + 1 \) and an integer \(l \) such that \(x < l \leq x + 1 \).

9. Let \(A \) be a non-empty subset of \(\mathbb{R} \) and \(x \in \mathbb{R} \). Define the distance \(d(x, A) \) between \(x \) and \(A \) by \(d(x, A) = \inf \{|x-a| : a \in A\} \). If \(\alpha \in \mathbb{R} \) is the l.u.b. of \(A \), show that \(d(\alpha, A) = 0 \).

10. (*)

 (a) Let \(x \in \mathbb{Q} \) and \(x > 0 \). If \(x^2 < 2 \), show that there exists \(n \in \mathbb{N} \) such that \((x + \frac{1}{n})^2 < 2 \). Similarly, if \(x^2 > 2 \), show that there exists \(n \in \mathbb{N} \) such that \((x - \frac{1}{n})^2 > 2 \).

 (b) Show that the set \(A = \{ r \in \mathbb{Q} : r > 0, r^2 < 2 \} \) is bounded above in \(\mathbb{Q} \) but it does not have the l.u.b. in \(\mathbb{Q} \).

 (c) From (b), conclude that \(\mathbb{Q} \) does not possess the l.u.b. property.

 (d) Let \(A \) be the set defined in (b) and \(\alpha \in \mathbb{R} \) such that \(\alpha = \sup A \). Show that \(\alpha^2 = 2 \).

11. (*) For a subset \(A \) of \(\mathbb{R} \), define \(-A = \{ -x : x \in A \} \). Suppose that \(S \) is a nonempty bounded subset of \(\mathbb{R} \).

 (a) Show that \(-S \) is bounded below.

 (b) Show that \(\inf(-S) = -\sup(S) \).

 (c) From (b) conclude that the l.u.b. property of \(\mathbb{R} \) implies the g.l.b. property of \(\mathbb{R} \) and vice versa.

12. (*) Let \(k \) be a positive integer and \(x = \sqrt{k} \). Suppose \(x \) is rational and \(x = \frac{m}{n} \) such that \(m \in \mathbb{Z} \) and \(n \) is the least positive integer such that \(nx \) is an integer. Define \(n' = n(x - [x]) \) where \([x] \) is the integer part of \(x \).

 (a) Show that \(0 \leq n' < n \) and \(n'x \) is an integer.

 (b) Show that \(n' = 0 \).

 (c) From (a) and (b) conclude that \(\sqrt{k} \) is either a positive integer or irrational.
Hints/Solutions

1. Suppose \(x_0 \neq 0 \). Then for \(\epsilon_0 = \frac{\text{49}}{2} \), \(x_0 > \epsilon_0 > 0 \) which is a contradiction.

2. Use Mathematical induction.

3. Since \(\alpha \) is a l.u.b. of \(E \) and \(\beta \) is an u.b. of \(E \), \(\alpha \leq \beta \). Similarly \(\beta \leq \alpha \).

4. Since \(\beta - \alpha > 0 \), by Archimedean property, there exists \(n \in \mathbb{N} \) such that \(n > \frac{1}{\beta - \alpha} \).

5. If \(\alpha \) is not the l.u.b then there exists an u.b. \(\beta \) of \(A \) such that \(\beta < \alpha \). Find \(n \in \mathbb{N} \) such that \(\beta < \alpha - \frac{1}{n} \). Since \(\exists a_n \in A \) such that \(\alpha - \frac{1}{n} < a_n \), \(\beta \) is not an u.b. which is a contradiction.

6. \(\sup = 1 \) and \(\inf = -1 \).

7. If \(\alpha \) is not the l.u.b. of \(E \), then there exists an u.b. \(\beta \) of \(E \) such that \(\beta < \alpha \). But \(\alpha \in E \) which contradicts the fact that \(\beta \) is an u.b. of \(E \).

8. Using the Archimedean property, find \(m, n \in \mathbb{N} \) such that \(-m < x < n \). Let \([x] \) be the largest integer between \(-m \) and \(n \) such that \([x] \leq x \). So, \([x] \leq x < [x] + 1 \). This implies that \(x < [x] + 1 \). Take \(l = [x] + 1 \). \(([x] \) is called the integer part of \(x \).

9. If \(d(\alpha, A) > 0 \), then find \(\epsilon \in \mathbb{R} \) such that \(0 < \epsilon < d(\alpha, A) \). So \(\alpha - a > \epsilon \) for all \(a \in A \). That is \(a < \alpha - \epsilon \) for all \(a \in A \). Hence \(\alpha - \epsilon \) is an u.b. of \(A \) which is contradiction.

10. (a) Suppose \(x^2 < 2 \). Observe that \((x + \frac{1}{n})^2 < x^2 + 2x + \frac{2}{n} \) for any \(n \in \mathbb{N} \). Using the Archimedean property, find \(n \) such that \(x^2 + \frac{1}{n} + \frac{2}{n} < 2 \). This \(n \) will do.

 (b) Note that 2 is an u.b. of \(A \). If \(m \in \mathbb{Q} \) such that \(m = \sup A \), then there are three possibilities: i. \(m^2 < 2 \) ii. \(m^2 = 2 \) iii. \(m^2 > 2 \). Using (a) show that this is not possible.

 (c) The set \(A \) defined in (b) is bounded above in \(\mathbb{Q} \) but does not have the l.u.b. in \(\mathbb{Q} \).

 (d) Using (a), justify that the following cases cannot occur: (i) \(\alpha^2 < 2 \) and (ii) \(\alpha^2 > 2 \).

11. (a) Trivial.

 (b) Let \(\alpha = \sup S \). We claim that \(-\alpha = \inf(-S) \). Since \(\alpha = \sup S \), \(a \leq \alpha \) for all \(a \in S \). This implies that \(-a \geq -\alpha \) for all \(a \in S \). Hence \(-\alpha \) is a l.b. of \(-S \). If \(-\alpha \) is not the g.l.b. of \(-S \) then there exists a lower bound \(\beta \) of \(A \) such that \(-\alpha < \beta \). Verify that \(-\beta \) is an u.b. of \(S \) and \(-\beta < \alpha \) which is a contradiction.

 (c) Assume that \(\mathbb{R} \) has the l.u.b. property and \(S \) is a non empty bounded below set. Then from (b) or the proof of (b), we conclude that \(\inf S \) exists and is equal to \(-\sup(-S) \).

12. Trivial.