1. Let \(f : [a, b] \to \mathbb{R} \) be integrable and \([c, d] \subset [a, b] \). Show that \(f \) is integrable on \([c, d] \).

2. (a) Let \(f \) be bounded on \([c, d] \), \(M = \sup\{ f(x) : x \in [c, d] \} \), \(M' = \sup\{ |f(x)| : x \in [c, d] \} \), \(m = \inf\{ f(x) : x \in [c, d] \} \) and \(m' = \inf\{ |f(x)| : x \in [c, d] \} \). Show that \(M' - m' \leq M - m \).

 (b) Let \(f : [a, b] \to \mathbb{R} \) be integrable. Show that \(|f| \) and \(f^2 \) are integrable.

3. (a) Let \(f : [0, 1] \to \mathbb{R} \) be integrable. Show that \(f \) is integrable on \([0, 1] \).

 (b) Let \(f : [0, 1] \to \mathbb{R} \) such that \(f^2 \) is integrable but \(f \) is not integrable. Find \(f \).

4. Let \(f \) and \(g \) be two integrable functions on \([a, b] \).

 (a) If \(f(x) \leq g(x) \) for all \(x \in [a, b] \), show that \(\int_a^b f(x)dx \leq \int_a^b g(x)dx \).

 (b) Show that \(|\int_a^b f(x)dx| \leq \int_a^b |f(x)|dx \).

 (c) If \(m \leq f(x) \leq M \) for all \(x \in [a, b] \), show that \(m(b - a) \leq \int_a^b f(x)dx \leq M(b - a) \). Use this inequality to show that \(\int_0^{\pi/3} x dx \leq \frac{\sqrt{3}}{6} \).

5. Let \(f : [a, b] \to \mathbb{R} \) and \(f(x) \geq 0 \) for all \(x \in [a, b] \).

 (a) If \(f \) is integrable, show that \(\int_a^b f(x)dx \geq 0 \).

 (b) If \(f \) continuous and \(\int_a^b f(x)dx = 0 \) show that \(f(x) = 0 \) for all \(x \in [a, b] \).

 (c) Give an example of an integrable function \(f \) on \([a, b] \) such that \(f(x) \geq 0 \) for all \(x \in [a, b] \) and \(\int_a^b f(x)dx = 0 \) but \(f(x_0) \neq 0 \) for some \(x_0 \in [a, b] \).

6. Let \(f : [0, 1] \to \mathbb{R} \) be a bounded function. Suppose that for any \(c \in (0, 1] \), \(f \) is integrable on \([c, 1] \).

 (a) Show that \(f \) is integrable on \([0, 1] \).

 (b) Show that the function \(f \) defined by \(f(0) = 0 \) and \(f(x) = \sin(\frac{1}{x}) \) on \([0, 1] \) is integrable,

7. Let \(f : [a, b] \to \mathbb{R} \) be a continuous function. Suppose that whenever the product \(fg \) is integrable on \([a, b] \) for some integrable function \(g \), we have \(\int_a^b (fg)(x)dx = 0 \). Show that \(f(x) = 0 \) for every \(x \in [a, b] \).

8. (a) Let \(x, y \geq 0 \). Show that \(\lim_{n \to \infty} (x^n + y^n)^{\frac{1}{n}} = M \) where \(M = \max\{x, y\} \).

 (b) Let \(f : [a, b] \to \mathbb{R} \) be continuous and \(f(x) \geq 0 \) for all \(x \in [a, b] \). Show that \(\lim_{n \to \infty} \left(\int_a^b f(x)^n \right)^{\frac{1}{n}} = M \) where \(M = \sup\{ f(x) : x \in [a, b] \} \).

9. (a) (Cauchy-Schwarz inequality) Let \(x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n \in \mathbb{R} \). By observing that \(\sum_{i=1}^n (x_i + y_i)^2 \geq 0 \) for any \(t \in \mathbb{R} \), show that \(\left| \sum_{i=1}^n x_i y_i \right| \leq \left(\sum_{i=1}^n x_i^2 \right)^{\frac{1}{2}} \left(\sum_{i=1}^n y_i^2 \right)^{\frac{1}{2}} \).

 (b) (Cauchy-Schwarz inequality) Let \(f \) and \(g \) be any two integrable functions on \([a, b] \).

 Show that \(\left(\int_a^b f(x)g(x)dx \right)^2 \leq \left(\int_a^b |f(x)|^2 dx \right) \left(\int_a^b |g(x)|^2 dx \right) \).

10. (*) Let \(f : [a, b] \to \mathbb{R} \) be integrable. Suppose that the values of \(f \) are changed at a finite number of points. Show that the modified function is integrable.

11. (*) Let \(f : [a, b] \to \mathbb{R} \) be a bounded function and \(E \subset [a, b] \). Suppose that \(E \) can be covered by a finite number of closed intervals whose total length can be made as small as desired. If \(f \) is continuous at every point outside \(E \), show that \(f \) is integrable.
1. Let $\epsilon > 0$. Since f is integrable on $[a, b]$, there exists a partition $P = \{x_0, x_1, x_2, ..., x_n\}$ (of $[a, b]$) such that $U(P, f) - L(P, f) < \epsilon$. Let $P_1 = P \cup \{c, d\}$ and $P' = P_1 \cap [c, d]$ which is a partition of $[c, d]$. Then, since $m_i - m_i > 0$, it follows that $U(P', f) - L(P', f) \leq U(P_1, f) - L(P_1, f) < \epsilon$. Apply the Riemann Criterion.

2. (a) Let $x, y \in [c, d]$. Then $|f(x) - f(y)| \leq |f(x) - f(y)| \leq M - m$. Fix y and take supremum for x, we get $M - |f(y)| \leq M - m$. Take infimum for y.

(b) To show that $|f|$ is integrable, use the Riemann Criterion and (a).

For showing f^2 is integrable, use the inequality $(f(x))^2 - (f(y))^2 \leq 2K|f(x) - f(y)|$ where $K = \sup\{|f(x)| : x \in [a, b]\}$ and proceed as in (a).

3. Let $f : [0, 1] \to \mathbb{R}$ be defined by $f(x) = -1$ for x rational and $f(x) = 1$ for x irrational. Then $|f| = f^2$. Note that f is not integrable but $|f|$ is a constant function.

4. (a) Use $\int_a^b g(x)dx - \int_a^b f(x)dx = \int_a^b (g - f)(x)dx$ and Problem 3 of Practice Problems 15.

(b) Since $-|f(x)| \leq f(x) \leq |f(x)|$, $x \in [a, b]$, (b) follows from part (a).

(c) Use part (a) or $L(P, f) \leq \int_a^b f(x)dx \leq U(P, f)$. On $[\frac{\pi}{4}, \frac{\pi}{3}]$, $\sin \frac{x}{x}$ decreases.

5. (a) This follows from the definition of integrability of f or from Problem 4.

(b) Let $x_0 \in (a, b)$ be such that $f(x_0) > \alpha$ for some $\alpha > 0$. Then by the continuity of f there exists a $\delta > 0$ such that $(x_0 - \delta, x_0 + \delta) \subset (a, b)$ and $f(x) > \alpha$ on $(x_0 - \delta, x_0 + \delta)$. Then we can find a partition P of $[a, b]$ such that $J_1 f(x)dx \geq L(P, f) > \alpha \times \delta > 0$.

(c) Let $f(a) = 1$ and $f(x) = 0$ for all $x \in [a, b]$. Then $\int_a^b f(x)dx = 0$ but $f(a) \neq 0$.

6. (a) Let $M = \sup\{|f(x)| : x \in [0, 1]\}$. If $P_n = \{\frac{1}{n}, x_1, x_2, ..., x_n\}$ is a partition of $[\frac{1}{n}, 1]$ then let $P_n' = \{0, \frac{1}{n}, x_1, x_2, ..., x_n\}$ be a corresponding partition of $[0, 1]$. Then $U(P_n', f) \leq \frac{M}{n} + U(P_n, f)$ and $L(P_n', f) \geq -\frac{M}{n} + L(P_n, f)$. Therefore, $U(P_n', f) - L(P_n', f) \leq \frac{2M}{n} + U(P_n, f) - L(P_n, f)$. For $\epsilon > 0$, first choose n such that $\frac{2M}{n} < \frac{\epsilon}{2}$ and then choose P_n such that $U(P_n, f) - L(P_n, f) < \frac{\epsilon}{2}$. Apply the Riemann Criterion.

(b) Since f is continuous on $[c, 1]$ for every c satisfying $0 < c < 1$, f is integrable on $[c, 1]$. Apply part (a).

7. Suppose $f(x_0) > 0$ for some $x_0 \in (a, b)$. Use the argument used in Problem 5(b).

8. (a) Note that $M \leq (x^n + y^n)^\frac{1}{n} \leq (2M^n)^\frac{1}{n}$. Use the Sandwich Theorem.

(b) For $\epsilon > 0$, by the continuity of f, $\exists [c, d] \subset [a, b]$ such that $f(x) > M - \epsilon \forall x \in [c, d]$. Hence $(M - \epsilon)(d - c)^\frac{1}{n} \leq \left(\int_a^b f(x)^n dx\right)^\frac{1}{n} \leq M(b - a)^\frac{1}{n}$. Apply the Sandwich Theorem.

9. We will see the solution of part (b) and the solution of part (a) is similar. Note that the inequality $\int_a^b t f(x) - g(x) dx = t^2 \left(\int_a^b f^2(x) dx\right) - 2t \left(\int_a^b f(x)g(x) dx\right) + \int_a^b (g^2(x) dx) \geq 0$ holds for all $t \in \mathbb{R}$. Take $t = \frac{\alpha}{\beta}$ where $\alpha = \int_a^b f(x)g(x) dx$ and $\beta = \int_a^b f^2(x) dx$.

10. Suppose the values of f are changed at $c_1, c_2, ..., c_p$ and g is the modified function. Let $M = \max\{|g(c_1)|, |g(c_2)|, ..., |g(c_p)|\}$. Let $\epsilon > 0$. Since f is integrable, there exists a partition P of $[a, b]$ such that $U(P, f) - L(P, f) < \frac{\epsilon}{2}$. Cover c_i’s by the intervals $[y_1, y_2], \ [y_3, y_4], ..., [y_{2p-1}, y_{2p}]$ where y_i’s are in $[a, b]$ and $|y_1 - y_2| + |y_3 - y_4| + ... + |y_{2p-1} - y_{2p}| < \frac{\epsilon}{4M}$. Consider the partition $P_1 = P \cup \{y_1, y_2, ..., y_{2p}\}$. Then $U(P_1, g) - L(P_1, g) \leq U(P_1, f) - L(P_1, f) + \frac{2\epsilon M}{4M} < U(P, f) - L(P, f) + \frac{\epsilon}{2} \leq \epsilon$. Apply the Riemann Criterion.