
Practice Problems 17 : Fundamental Theorems of Calculus, Riemann Sum

1. (a) Show that every continuous function on a closed bounded interval is a derivative.

(b) Show that an integrable function on a closed bounded interval need not be a deriva-
tive.

2. (a) Let f : [−1, 1] → R be defined by f(x) = 0 for −1 ≤ x < 0 and f(x) = 1 for
0 ≤ x ≤ 1. Define F (x) =

∫ x
−1 f(t)dt.

i. Sketch the graphs of f and F and observe that f is not continuous; however, F
is continuous.

ii. Observe that F is not differentiable at 0.

(b) Give an example of a function f on [−1, 1] such that f is not continuous at 0 but
F (x) defined by F (x) =

∫ x
−1 f(t)dt is differentiable at 0.

3. Let f : [a, b] → R be integrable. Show that
∫ b
a f(t)dt = limx→b

∫ x
a f(t)dt.

4. Prove the second FTC by assuming the integrand to be continuous.

5. Let f : [−1, 1] → R be defined by f(x) = 2x sin 1
x2 − ( 2x) cos

1
x2 for x ̸= 0 and f(0) = 0.

Show that F ′ = f where F (x) = x2 sin 1
x2 for x ̸= 0 and F (0) = 0 but

∫ 1
−1 F

′(t)dt does not
exist.

6. Let f : [0, 1] → R be continuous such that |f(x)| ≤
∫ x
0 f(t)dt for all x ∈ [0, 1]. Show that

f(x) = 0 for all x ∈ [0, 1].

7. Let f : R → R be continuous. Define g(x) =
∫ x
0 (x − t)f(t)dt for all x ∈ R. Show that

g′′ = f .

8. Let f be continuous on R and α ̸= 0. If g(x) = 1
α

∫ x
0 f(t) sinα(x − t)dt, show that

f(x) = g′′(x) + α2g(x).

9. Let f be a differentiable function on [0, 1]. Show that there exists c ∈ (0, 1) such that∫ 1
0 f(x)dx = f(0) + 1

2f
′(c).

10. Let f : [0, 1] → R be a continuous function such that
∫ 1
0 f(x)dx = 1. Show that there

exists a point c ∈ (0, 1) such that f(c) = 3c2.

11. Let f : [0, π4 ] → R be continuous. Show that ∃ c ∈ [0, π4 ] such that 2 cos 2c
∫ π/4
0 f(t)dt =

f(c).

12. Let f : [0, a] → R be such that f ′′(x) > 0 for every x ∈ [0, a]. Show that
∫ a
0 f(x)dx ≥ af(a2 ).

13. Let f : [a, b] → R be continuous and
∫ x
a f(t)dt =

∫ b
x f(t)dt for all x ∈ [a, b]. Show that

f(x) = 0 for all x ∈ [a, b].

14. Let f, g : [a, b] → R be integrable functions. Suppose that f is increasing and g is

non-negative on [a, b]. Show that there exists c ∈ [a, b] such that
∫ b
a f(x)g(x)dx =

f(b)
∫ c
a g(x)dx+ f(a)

∫ b
c g(x)dx.

15. Show that the MVT implies the first MVT for integrals: If f : [a, b] → R is continuous

then there ∃ c ∈ (a, b) such that
∫ b
a f(t)dt = f(c)(b − a). Observe that the converse can

be obtained for functions whose derivatives are continuous.

16. Show that
∫ n+1
n

1
xdx < 1

n for every n ∈ N.



17. Let f, g : [a, b] → R be continuous and
∫ b
a f(x)dx =

∫ b
a g(x)dx. Show that there exists

c ∈ [a, b] such that f(c) = g(c).

18. Show that π2

9 ≤
∫ π/2
π/6

x
sinx ≤ 2π2

9 .

19. Let f : [0, 1] → R be an integrable function. Show that limn→∞
∫ 1
0 xnf(x)dx = 0.

20. Let f : [0, 1] → R be continuous. Show that limn→∞
∫ 1
0 f(xn)dx = f(0).

21. Let f : [a, b] → R be continuous. Show that lim∥P∥→0 S(P, f) =
∫ b
a f(x)dx.

22. Find limn→∞
∑n

k=1
1√

n2+kn
.

23. Show that limn→∞
1
n3

[
sin π

n + 22 sin 2π
n + ...+ n2 sin nπ

n

]
=

∫ 1
0 x2 sin(πx)dx.

24. Show that limn→∞
1

n18

∑n
k=1 k

16 = 0.

25. Let an = ln

(
(n!)

1
n

n

)
for all n ∈ N. Convert an in to a Riemann sum and find limn→∞ an.

26. (Integration by parts) Let f, g : [a, b] → R be such that f ′ and g′ are continuous on [a, b].

Show that
∫ b
a f(x)g′(x)dx = f(b)g(b)− f(a)g(a)−

∫ b
a f ′(x)g(x)dx.

27. (*)(Integration by substitution) Let ϕ : [α, β] → R be differentiable and ϕ′ be continuous
on [α, β]. Suppose that ϕ([α, β]) = [a, b] and f : [a, b] → R is continuous. Then∫ ϕ(β)
ϕ(α) f(x)dx =

∫ β
α f(ϕ(t))ϕ′(t)dt.

28. (Leibniz Rule) Let f be a continuous function and u and v be differentiable functions

on [a, b]. If the range of u and v are contained in [a, b], show that d
dx

∫ v(x)
u(x) f(t)dt =

f(v(x)) dvdx − f(u(x))dudx .

29. Let f : [1,∞) → R be defined by f(x) =
∫ x
1

ln t
1+tdt. Solve the equation f(x) + f( 1x) = 2.



Practice Problems 17 : Hints/Solutions

1. (a) Follows immediately from the first FTC.

(b) Consider the function f : [−1, 1] → R defined by f(x) = −1 for −1 ≤ x < 0, f(0) = 0
and f(x) = 1 for 0 < x ≤ 1. Then f is integrable on [1, 1]. Since f does not have the
intermediate value property, it cannot be a derivative (see Problem 13(c) of Practice
Problems 7).

2. (a) F (x) = 0 for −1 ≤ x ≤ 0 and F (x) = x for 0 < x ≤ 1.

(b) Let f : [−1, 1] → R be defined by f( 1n) =
1
n for every n ∈ N and f(x) = 0 otherwise.

Then F (x) =
∫ x
−1 f(t)dt = 0 for all x ∈ [−1, 1] and hence it is differentiable at 0 but

f is not continuous at 0.

3. Follows from the first FTC.

4. Let f : [a, b] → R be continuous and f = F ′ for some F on [a, b]. Define Fa(x) =
∫ x
a f(t)dt

on [a, b]. Then by the first FTC, F = Fa + C for some constant C. Since Fa(a) = 0,

C = F (a) and hence F (b)− F (a) =
∫ b
a f(t)dt.

5. Observe that F ′ is not bounded.

6. Let M = sup{|f(x)| : x ∈ [0, 1]}. Then for a fixed x ∈ [0, 1], |f(x)| ≤ M xn

n! → 0.

7. Write g(x) = x
∫ x
0 f(t)dt−

∫ x
0 tf(t)dt and apply the first FTC.

8. Write g(x) = 1
α

[
sin(αx)

∫ x
0 f(t) cos(αt)dt− cos(αx)

∫ x
0 f(t) sin(αt)dt

]
and apply the first

FTC.

9. Let F (x) =
∫ x
0 f(t)dt. Apply the Extended MVT to F on [0, 1].

10. Consider the function F (x) =
∫ x
0 f(t)dt− x3 on [0, 1]. Apply Rolle’s theorem.

11. Let F (x) =
∫ x
0 f(t)dt and G(x) = sin 2x. Apply the CMVT for F and G on [0, π/4].

12. Let x0 ∈ (0, a). Then by Taylor’s theorem, f(x) ≥ f(x0) + f ′(x0)(x − x0). Then∫ a
0 f(x)dx ≥ af(x0)− ax0f

′(x0) +
a2

2 f
′(x0). Choose x0 =

a
2 .

13. Let F (x) =
∫ x
a f(t)dt. Then F ′(x) = f(x). The given condition implies that F (x) =

F (b)− F (x). Therefore, F ′(x) = 0 which implies that f(x) = 0.

14. Define h(x) = f(b)
∫ x
a g(x)dx+f(a)

∫ b
x g(x)dx for all x ∈ [a, b]. Now h(a) = f(a)

∫ b
a g(x)dx ≤∫ b

a f(x)g(x)dx ≤ f(b)
∫ b
a g(x)dx = h(b). Apply the IVP.

15. Let f : [a, b] → R be continuous. Define F (x) =
∫ x
a f(t)dt. Then by the MVT, there

∃ c ∈ (a, b) such that F (b) − F (a) = F ′(c)(b − a). Apply the First FTC. Conversely,
let f : [a, b] → R be differentiable and f ′ be continuous. Then by the MVT for integrals,

∃ c ∈ (a, b) such that
∫ b
a f ′(x)dx = f ′(c)(b−a). This implies that f(b)−f(a) = f ′(c)(b−a).

16. Use the first MVT for integrals.

17. Use the first MVT for integrals.

18. Use the second MVT for integrals (See Problem 2 of Assignment 6).

19. Note that f is bounded on [0, 1]. Apply the second MVT for integrals.



20. Apply the second MVT for integrals.

21. Let ϵ > 0. By the uniform continuity of f , we find a δ > 0 such that U(P, f)−L(P, f) < ϵ

whenever ∥P∥ < δ (See Theorem 4 of Lecture 16). Since L(P, f) ≤
∫ b
a f(x)dx ≤ U(P, f)

and L(P, f) ≤ S(P, f) ≤ U(P, f), we have |
∫ b
a f(x)dx− S(P, f)| < ϵ whenever ∥P∥ < δ.

22. limn→∞
∑n

k=1
1√

n2+kn
= limn→∞

1
n

∑n
k=1

1√
1+ k

n

→
∫ 1
0

dx√
1+x

= 2(
√
2− 1).

23. Note that 1
n3

[
sin π

n + 22 sin 2π
n + ...+ n2 sin nπ

n

]
=

∑n
k=1

1
n(

k
n)

2 sin kπ
n . Apply Problem 22

24. Note that 1
n18

∑n
k=1 k

16 = 1
n

[
1
n

∑n
k=1

(
k
n

)16]
and 1

n

∑n
k=1

(
k
n

)16 → ∫ 1
0 x16dx.

25. an = 1
n(ln

1
n + ln 2

n + ...+ ln n
n) and an →

∫ 1
0 lnxdx.

26. Let h(x) = f(x)g(x). Then h′ = f ′g + fg′. Therefore
∫ b
a h′(x)dx = h(b)− h(a).

27. Define F (x) =
∫ x
ϕ(α) f(u)du. Therefore d

dtF (ϕ(t))) = F ′(ϕ(t))ϕ′(t) = f(ϕ(t))ϕ′(t). Now∫ β
α f(ϕ(t))ϕ′(t)dt = [F (ϕ(t))]βα = F (ϕ(β)).

28. Note that d
dx

∫ v(x)
u(x) f(t)dt =

d
dx

[∫ v(x)
0 f(t)dt−

∫ u(x)
0 f(t)dt

]
. Apply the first FTC.

29. Observe that f( 1x) =
∫ 1/x
1

ln t
1+tdt =

∫ x
1

ln y
y(1+y)dy, by taking t = 1

y . Therefore f(x) + f( 1x) =∫ x
1

ln t
1+t(1 +

1
t )dt =

∫ x
1

ln t
t dt = 1

2(lnx)
2. Now f(x) + f( 1x) = 2 implies that lnx = ±2 which

implies that x = e2 as x > 1.


