PP 24 : Calculus of Vector Valued Functions I : Parametric representations of curves

- 1. Match the parametric equation with the curve it defines. The curves are given in Figures 1-11.
 - (a) $R(t) = (t^2, t^3), t \in \mathbb{R}$ (Cuspidal cubic).
 - (b) $R(t) = (e^t \cos t, e^t \sin t), t \ge 0$ (Logarithmic spiral)
 - (c) $R(t) = (t \cos t, t \sin t), t \ge 0$ (Spiral)
 - (d) $R(t) = (t^2 1, t(t^2 1)), t \in \mathbb{R}$ (Crunodal cubic)
 - (e) $R(t) = (t^2 + t, 2t 1), t \in \mathbb{R}$ (Parabola)
 - (f) $R(t) = (\cos^3 t, \sin^3 t), 0 \le t \le 2\pi$ (Astroid)
 - (g) $R(t) = (\sin^2 t, 2\cos t), t \in \mathbb{R}$
 - (h) $R(t) = (\cos t^2, \sin t^2, t^2), t \in \mathbb{R}$
 - (i) $R(t) = (\cos t, \sin t, \sin t), t \in \mathbb{R}$
 - (j) $R(t) = (t\cos t, t\sin t, t), t \ge 0$
 - (k) $R(t) = (1 + \sin t, 1 + \sin t, 2 + \sin t), t \in \mathbb{R}$
- 2. Find parametric representations of the following circles.
 - (a) The circle of radius 4 centered at (1,0,2) and parallel to the yz-plane.
 - (b) The circle of radius 3 centered at (0,0,0) and lying on the plane containing two unit vectors \mathbf{u} and \mathbf{v} where $\mathbf{u} \cdot \mathbf{v} = 0$.
 - (c) The circle of radius 3 centered at (1,1,2) and parallel to the plane containing two unit vectors \mathbf{u} and \mathbf{v} where $\mathbf{u} \cdot \mathbf{v} = 0$.
 - (d) The intersection of the sphere $x^2 + y^2 + z^2 = 4$ and the plane z = y.
 - (e) The circle passing through $e_1 = (1, 0, 0), e_2 = (0, 1, 0)$ and $e_3 = (0, 0, 1)$.
- 3. Parameterize the curve given by $x^3 + y^3 = 3xy$ by considering the parameter $t = \frac{y}{x}$ which is the slope of the line through the origin and the point (x, y) on the curve.
- 4. Consider the unit circle $x^2 + y^2 = 1$. By considering the parameter $t = \frac{y}{x-1}$ which is the slope of the line joining (1,0) and the point (x,y) on the curve, show that $R(t) = \left(\frac{t^2-1}{t^2+1}, \frac{2t}{t^2+1}\right)$ is a parametric representation of the unit circle. (This parametrization of the circle is called *rational parametrization*).
- 5. Consider a parametric representation of the line $R(t) = (x_0 + tu, y_0 + tv), t \in \mathbb{R}, (u, v) \neq (0, 0)$. Show that $vx uy vx_0 + uy_0 = 0$ is an implicit equation of the line.
- 6. Reparameterize the following curves in terms of arc length.
 - (a) $R(t) = (2+t, 3-t, 5t), t \ge 0.$
 - (b) $R(t) = (2\cos t, 2\sin t, \sqrt{5}t), t > 0.$
- 7. Find two parametric representations $R_1(t)$ and $R_2(t)$ for the line y = x in \mathbb{R}^2 such that $R_1(0) = R_2(0) = (0,0)$ and $R'_1(0) \neq (0,0)$ but $R'_2(0) = (0,0)$.
- 8. Consider a curve $R(t), t \in I$ and let $R'(t) \neq 0$ for all t. Show that the arc length parametrization R(t(s)) of the curve R(t) has unit speed, i.e, $\|\frac{dR}{ds}\| = 1$.

Practice Problems 24: Hints/Solutions

- 1. The curve is sketched/identified by plotting the points $R(t_i)$ for some $t_1, t_2, ..., t_n$.
 - (a) Note that the curve is symmetric about the x axis i.e. if (x(t), y(t)) lies on the curve then (x(t), -y(t)) = (x(-t), y(-t)) also lies on the curve. Moreover $x(t) = t^2 > 0$ for all t. The curve is given in Figure 4.
 - (b) Note that $R(t) = (r(t)\cos t, r(t)\sin t), t \ge 0$ where $r(t) = e^t$. So R(t) is a parametric form of the polar curve $r(t) = e^t$. The curve is given in Figure 6.
 - (c) The curve is given in Figure 5. It is a polar curve $r(t) = t, t \ge 0$.
 - (d) For t = 1 and t = -1, R(t) = (0,0). The curve is symmetric about the x-axis. The curve is given in Figure 1.
 - (e) Since $t = \frac{y+1}{2}$, we get $x = \frac{y^2}{4} + y + \frac{3}{4}$ (by eliminating t). The curve is given in Figure
 - (f) The curve is given in Figure 2.
 - (g) Note that $4x + y^2 = 4, 0 \le x \le 1$ and $-2 \le y \le 2$. So the curve is a portion of a parabola which is given in Figure 7.
 - (h) Observe that the x and y components trace out a circle in the xy-plane. The curve is given in Figure 9.
 - (i) The x and y components trace out a circle and the curve lies on the plane z = y. The curve is given in Figure 8.
 - (j) A point (x, y, z) on the curve satisfies the equation $x^2 + y^2 = z^2$. The curve is given in Figure 11.
 - (k) If we substitute $t' = \sin t$, the points in the curve are represented by (1+t', 1+t', 2+t') which lies on a straight line. Since $\sin t$ is bounded the given curve is a line segment which is given in Figure 10.
- 2. (a) The given circle is a translation of the circle $r(t) = (0, 4\cos t, 4\sin t)$. A parametrization of the given circle is $R(t) = (1, 0, 2) + (0, 4\cos t, 4\sin t), 0 \le t \le 2\pi$.
 - (b) Observe that any point **p** on the plane containing **u**, **v** and (0,0,0) can be expressed as $\mathbf{p} = (\mathbf{p} \cdot \mathbf{u})\mathbf{u} + (\mathbf{p} \cdot \mathbf{v})\mathbf{v}$ (see PP 23). Let (x,y,z) be a point on the circle and t be the angle between the vectors (x,y,z) and **u**. Then $(x,y,z) = 4(\cos t)\mathbf{u} + 4(\sin t)\mathbf{v}$. Therefore a parametric representation of the given circle is $R(t) = 4(\cos t)\mathbf{u} + 4(\sin t)\mathbf{v}$.
 - (c) By (b), a parametrization of the given circle is $R(t) = (1, 1, 2) + 4(\cos t)\mathbf{u} + 4(\sin t)\mathbf{v}$.
 - (d) Observe that the intersection is a circle lying in the plane z=y centered at (0,0,0) with radius 2. Let $\mathbf{u}=(1,0,0)$ and $\mathbf{v}=\frac{1}{\sqrt{2}}(0,1,1)$. Then \mathbf{u} and \mathbf{v} are perpendicular unit vectors lying on the plane z=y. Following the solution of (b), we observe that a parametric representation of the given circle is $R(t)=(2\cos t)(1,0,0)+(2\sin t)\frac{1}{\sqrt{2}}(0,1,1)=2(\cos t,\frac{\sin t}{\sqrt{2}},\frac{\sin t}{\sqrt{2}})$.
 - (e) The center of the circle is the center of the equilateral triangle formed by e_1, e_2 and e_3 which is $\mathbf{u} = \frac{1}{3}(1, 1, 1)$. This can be easily checked because $||u e_1|| = ||u e_2|| = ||u e_3|| = \frac{\sqrt{6}}{3}$ and the point $\frac{1}{3}(1, 1, 1)$ lies on the triangular region. The unit vector in the direction from the center \mathbf{u} towards the direction of a point on the circle e_3 is $\mathbf{w} = \frac{1}{\sqrt{6}}(1, 1, -2)$. If \mathbf{v} is a unit vector which is perpendicular to \mathbf{w} and (1, 1, 1) which is a normal to the plane containing e_1, e_2, e_3 , then $\mathbf{v} = \frac{1}{\sqrt{2}}(1, -1, 0)$. Following the solution of (c), we observe that a parametric representation of the given circle is $R(t) = \frac{1}{3}(1, 1, 1) + \frac{\sqrt{6}}{3}(\cos t)\mathbf{w} + \frac{\sqrt{6}}{3}(\sin t)\mathbf{v}$.

- 3. Substitute y=tx into the equation and get $x=\frac{3t}{1+t^3}$, by ignoring the trivial solution x=0. Since y=tx we get $y=\frac{3t^2}{1+t^3}$. Therefore a parametrization for the curve is $R(t)=\left(\frac{3t}{1+t^3},\frac{3t^2}{1+t^3}\right)$.
- 4. Substitute y = t(x-1) into the equation and get $x = \frac{t^2-1}{t^2+1}$, by ignoring the trivial solution x = 1.
- 5. Let (x, y) be any point on the line. Then $(x x_0, y y_0) \times (u, v) = 0$.
- 6. (a) By definition $s(t) = \int_0^t \sqrt{(x'(\tau))^2 + (y'(\tau))^2 + (z'(\tau))^2} d\tau = \int_0^t \sqrt{27} d\tau = \sqrt{27}t$. This implies that $R(t(s)) = (2 + \frac{1}{\sqrt{27}}s, 3 \frac{1}{\sqrt{27}}s, \frac{5}{\sqrt{27}}s)$.
 - (b) By definition s(t)=3t. Therefore $t(s)=\frac{s}{3}$ and hence $R(t(s))=(2\cos\frac{s}{3},2\sin\frac{s}{3},\sqrt{5}\frac{s}{3})$.
- 7. Consider $R_1(t) = (t, t)$ and $R_2(t) = (t^3, t^3), t \in \mathbb{R}$.
- 8. Since the parametrization is in terms of s, $\|\frac{dR}{ds}\|$ is the speed of R(t(s)). We know that $\frac{dR}{ds} = T$ and therefore $\|\frac{dR}{ds}\| = 1$.