Practice problems 4 : Continuity and Limit

1. Find the value of α such that \(\lim_{x \to -1} \frac{2x^2 - \alpha x - 14}{x^2 - 2x - 3} \) exists. Find the limit.

2. Let \(\lim_{x \to 0} \frac{f(x)}{x} = 5 \). Show that \(\lim_{x \to 0} \frac{f(x)}{x} = 0 \).

3. Let \(f : \mathbb{R} \to \mathbb{R} \) and \(x_0 \in \mathbb{R} \). Suppose \(\lim_{x \to x_0} f(x) \) exists. Show that \(\lim_{x \to x_0} f(x + x_0) = \lim_{x \to x_0} f(x) \).

4. Let \(f(x) = |x| \) for every \(x \in \mathbb{R} \). Show that \(f \) is continuous on \(\mathbb{R} \).

5. Let \(f : [0, \pi] \to \mathbb{R} \) be defined by \(f(0) = 0 \) and \(f(x) = x \sin \frac{1}{x} - \frac{1}{x} \cos \frac{1}{x} \) for \(x \neq 0 \). Is \(f \) continuous?

6. Let \(f, g : \mathbb{R} \to \mathbb{R} \) be continuous such that given any two points \(x_1 < x_2 \), there exists a point \(x_3 \) such that \(x_1 < x_3 < x_2 \) and \(f(x_3) = g(x_3) \). Show that \(f(x) = g(x) \) for all \(x \).

7. Let \(f(x) = 0 \) when \(x \) is rational and 1 when \(x \) is irrational. Determine the points of continuity for the function \(f \).

8. Let \([\cdot]\) denote the integer part function and \(f : [0, \infty) \to \mathbb{R} \) be defined by \(f(x) = [x^2] \sin \pi x \). Show that \(f \) is continuous at each \(x \neq \sqrt{n}, \ n = 1, 2, \ldots \). Further, show that \(f \) is discontinuous on \(\{x \in [0, \infty) : x = \sqrt{n} \ where \ n \neq k^2, \ for \ some \ positive \ integer \ k \} \).

9. Let \(f : \mathbb{R} \to (0, \infty) \) satisfy \(f(x + y) = f(x)f(y) \) for all \(x, y \in \mathbb{R} \). Suppose \(f \) is continuous at \(x = 0 \). Show that \(f \) is continuous at all \(x \in \mathbb{R} \).

10. Let \(f : \mathbb{R} \to \mathbb{R} \) be a continuous function such that \(f(x) = f(x^2) \) for all \(x \in \mathbb{R} \). Show that \(f \) is constant.

11. Suppose \(f : [0, \infty) \to \mathbb{R} \) is continuous and \(\lim_{x \to \infty} f(x) \) exists. Show that \(f \) is bounded on \([0, \infty)\).

12. (*) Let \(f : [0, 1] \to \mathbb{R} \) be one-one. Suppose \(f \) is continuous. Show that \(f^{-1} \) is also continuous on \(\{f(x) : x \in [0, 1]\} \), the range of \(f \).

13. (*) Let \(f : \mathbb{R} \to \mathbb{R} \) be continuous and \(f(x + y) = f(x) + f(y) \) for all \(x, y \in \mathbb{R} \). Show that \(f(x) = f(1)x \) for all \(x \in \mathbb{R} \).

14. (*) Let \(f : (0, 1) \to \mathbb{R} \) be given by

 \[
 f(x) = \begin{cases}
 \frac{1}{q} & \text{if } x = \frac{p}{q} \text{ where } p, q \in \mathbb{N} \text{ and } p, q \text{ have no common factors} \\
 0 & \text{if } x \text{ is irrational}
 \end{cases}
 \]

 (a) Let \(x_n = \frac{p_n}{q_n} \in (0, 1) \) where \(p_n, q_n \in \mathbb{N} \) and have no common factors. Suppose \(x_n \to x \) for some \(x \) with \(x_n \neq x \) for all \(n \in \mathbb{N} \). Show that \(\lim_{n \to \infty} q_n = \infty \).

 (b) Show that \(f \) is continuous at every irrational.

 (c) Show that \(f \) is discontinuous at every rational.

1. \(\alpha = 12 \) and the limit is 4.

2. Note that \(\frac{f(x)}{x} = \frac{f(x)}{x^2}x \) for \(x \neq 0 \).

3. Let \(\lim_{x \to x_0} f(x) = M \) for some \(M \in \mathbb{R} \). Let \(x_n \to 0 \), \(x_n \neq 0 \) \(\forall n \). Then \(x_n + x_0 \to x_0 \).
 Since \(\lim_{x \to x_0} f(x) = M, f(x_n + x_0) \to M \). This implies that \(\lim_{x \to 0} f(x + x_0) = M \).

4. Let \(x \in \mathbb{R} \) and \(x_n \to x \). Then \(|x_n| \to |x| \), because, \(|x_n - |x|| \leq |x_n - x| \). Therefore \(f \) is continuous at \(x \).

5. The function is not continuous at 0, because, \(x_n = \frac{1}{2n} \to 0 \) but \(f(\frac{1}{2n}) \to f(0) \).

6. Fix some \(x_0 \in \mathbb{R} \). For every \(n \), find \(x_n \) such that \(x_0 - \frac{1}{n} < x_n < x_0 \) and \((f - g)(x_n) = 0 \).
 Allow \(n \to \infty \) and apply the continuity.

7. Suppose \(x_0 \) is rational. Find an irrational sequence \((x_n) \) such that \(x_n \to x_0 \). Then \(f(x_n) = 1 \to f(x_0) = 0 \). Therefore \(f \) is not continuous at \(x_0 \). Let \(y_0 \) be rational. Show that \(f \) is not continuous at \(y_0 \).

8. Case 1: \(x_0 \neq \sqrt{n}, n = 1, 2, \ldots \) It is clear that \(f \) is continuous at \(x_0 \). Case 2: \(x_0 = \sqrt{n} \) where \(n = k^2 \), for some positive integer \(k \). In this case \(\lim_{x \to k^2} f(x) = \lim_{x \to k} f(x) = 0 \). Case 3: \(x_0 = \sqrt{n} \) where \(n \neq k^2 \), for some positive integer \(k \). In this case, \(\lim_{x \to \sqrt{n}} f(x) = n \sin(\pi \sqrt{n}) \) and \(\lim_{x \to -\sqrt{n}} f(x) = (n - 1) \sin(\pi \sqrt{n}) \).

9. Since \(f(0) = f(0)^2, f(0) = 1 \) and since \(f(x - x) = f(0), f(-x) = \frac{1}{f(x)} \). Let \(x_0 \in \mathbb{R} \) and \(x_n \to x_0 \). By continuity at 0, \(f(x_n - x_0) \to 1 \) and hence \(f(x_n) \to \frac{1}{f(0)} = f(x_0) \).

10. Suppose \(x > 0 \). By the assumption, \(f(x) = f(x^{\frac{1}{2}}) = f(x^{\frac{1}{2^n}}) = f(x^{\frac{1}{2^n}}) \). Since \(x^{\frac{1}{2^n}} \to 1, f(x^{\frac{1}{2^n}}) \to f(1), i.e. f(x) = f(1). \) Now \(f(-x) = f((-x)^2) = f(x^2) = f(x) \). At \(x = 0 \), by continuity, \(\lim_{x \to 0} f(x) = f(0) = f(1) \). Therefore \(f(x) = f(1) \) for all \(x \in \mathbb{R} \).

11. Suppose \(\lim_{x \to \infty} f(x) = \beta \) for some \(\beta \). Then there exists a positive real number \(M \) such that \(|f(x) - \beta| < 1 \) for all \(x \) such that \(x \geq M \). Then \(|f(x)| \leq 1 + \beta \) for every \(x \) such that \(x \geq M \). That is \(f \) is bounded on \(\{x: x \geq M\} \). Also by continuity, \(f \) is bounded on \([0, M]\).

12. Let \(f(x_n) \to f(x_0) \) for some \(x_n, x_0 \in [0, 1] \). We show that \(x_n \to x_0 \) which proves that \(f^{-1} \) is continuous at \(f(x_0) \). If \((x_{n_k}) \) is any subsequence, then by Bolzano-Weierstrass theorem, there exists a subsequence \((x_{n_{k_1}}) \) such that \(x_{n_{k_1}} \to \alpha \) for some \(\alpha \in [0, 1] \). By continuity, \(f(x_{n_{k_1}}) \to f(\alpha) \). By our assumption \(f(\alpha) = f(x_0) \) and since \(f \) is one-one \(x_0 = \alpha \). By Problem 8 of Practice problems 3, \(x_n \to x_0 \).

13. First observe that \(f(0) = 0 \) and \(f(n) = nf(1) \) for all \(n \in \mathbb{N} \). Next note that \(f(-1) = -f(1) \) and \(f(m) = f(1)m \) for all \(m \in \mathbb{Z} \). By observing \(f(\frac{1}{n}) = f(1)\frac{1}{n} \) for all \(n \in \mathbb{N} \), show that \(f(\frac{m}{n}) = f(1)\frac{m}{n} \) for all \(m \in \mathbb{Z} \) and \(n \in \mathbb{N} \). Finally take any irrational number \(x \) and find \(r_n \in \mathbb{Q} \) such that \(r_n \to x \) and apply the continuity to conclude that \(f(x) = f(1)x \).

14. (a) If for some \(M \in \mathbb{N}, q_n < M \) for all \(n \in \mathbb{N} \), then the set \(\{x_n : n \in \mathbb{N}\} \) is finite which is not true. Similarly we can show that any subsequence of \((q_n) \) cannot be bounded.

(b) Suppose \(x_0 \) is rational in \((0, 1)\) and \(x_n \to x_0 \) where \(x_n \) can be rational or irrational. Apply (a) to show that \(f(x_n) \to 0 = f(x_0) \).

(c) Suppose \(x_0 \) is irrational in \((0, 1)\). To show that \(f \) is discontinuous at \(x_0 \), choose an irrational sequence \((x_n) \) such that \(x_n \to x_0 \).