Practice problems 4: Continuity and Limit

- 1. Find the value of α such that $\lim_{x\to -1} \frac{2x^2-\alpha x-14}{x^2-2x-3}$ exists. Find the limit.
- 2. Let $\lim_{x\to 0} \frac{f(x)}{x^2} = 5$. Show that $\lim_{x\to 0} \frac{f(x)}{x} = 0$.
- 3. Let $f: \mathbb{R} \to \mathbb{R}$ and $x_0 \in \mathbb{R}$. Suppose $\lim_{x \to x_0} f(x)$ exists. Show that $\lim_{x \to 0} f(x + x_0) = \lim_{x \to x_0} f(x)$.
- 4. Let f(x) = |x| for every $x \in \mathbb{R}$. Show that f is continuous on \mathbb{R} .
- 5. Let $f:[0,\pi]\to\mathbb{R}$ be defined by f(0)=0 and $f(x)=x\sin\frac{1}{x}-\frac{1}{x}\cos\frac{1}{x}$ for $x\neq 0$. Is f continuous?
- 6. Let $f, g : \mathbb{R} \to \mathbb{R}$ be continuous such that given any two points $x_1 < x_2$, there exists a point x_3 such that $x_1 < x_3 < x_2$ and $f(x_3) = g(x_3)$. Show that f(x) = g(x) for all x.
- 7. Let f(x) = 0 when x is rational and 1 when x is irrational. Determine the points of continuity for the function f.
- 8. Let $[\cdot]$ denote the integer part function and $f:[0,\infty)\to\mathbb{R}$ be defined by $f(x)=[x^2]sin\pi x$. Show that f is continuous at each $x\neq\sqrt{n},\ n=1,2,...$ Further, show that f is discontinuous on $\{x\in[0,\infty):x=\sqrt{n}\text{ where }n\neq k^2,\text{ for some positive integer }k\}$.
- 9. Let $f: \mathbb{R} \to (0, \infty)$ satisfy f(x+y) = f(x)f(y) for all $x, y \in \mathbb{R}$. Suppose f is continuous at x = 0. Show that f is continuous at all $x \in \mathbb{R}$.
- 10. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function such that $f(x) = f(x^2)$ for all $x \in \mathbb{R}$. Show that f is constant.
- 11. Suppose $f:[0,\infty)\to\mathbb{R}$ is continuous and $\lim_{x\to\infty}f(x)$ exists. Show that f is bounded on $[0,\infty)$.
- 12. (*) Let $f:[0,1]\to\mathbb{R}$ be one-one. Suppose f is continuous. Show that f^{-1} is also continuous on $\{f(x):x\in[0,1]\}$, the range of f.
- 13. (*) Let $f: \mathbb{R} \to \mathbb{R}$ be continuous and f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$. Show that f(x) = f(1)x for all $x \in \mathbb{R}$.
- 14. (*) Let $f:(0,1)\to\mathbb{R}$ be given by

$$f(x) = \left\{ \begin{array}{ll} \frac{1}{q} & \text{if } x = \frac{p}{q} \text{ where } p,q \in \mathbb{N} \text{ and } p,q \text{ have no common factors} \\ 0 & \text{if } x \text{ is irrational} \end{array} \right.$$

- (a) Let $x_n = \frac{p_n}{q_n} \in (0,1)$ where $p_n, q_n \in \mathbb{N}$ and have no common factors. Suppose $x_n \to x$ for some x with $x_n \neq x$ for all $n \in \mathbb{N}$. Show that $\lim_{n \to \infty} q_n = \infty$.
- (b) Show that f is continuous at every irrational.
- (c) Show that f is discontinuous at every rational.

Practice Problems 4: Hints/solutions

- 1. $\alpha = 12$ and the limit is 4.
- 2. Note that $\frac{f(x)}{x} = \frac{f(x)}{x^2}x$ for $x \neq 0$.
- 3. Let $\lim_{x\to x_0} f(x) = M$ for some $M \in \mathbb{R}$. Let $x_n \to 0, x_n \neq 0 \ \forall n$. Then $x_n + x_0 \to x_0$. Since $\lim_{x\to x_0} f(x) = M$, $f(x_n + x_0) \to M$. This implies that $\lim_{x\to 0} f(x + x_0) = M$.
- 4. Let $x \in \mathbb{R}$ and $x_n \to x$. Then $|x_n| \to |x|$, because, $||x_n |x|| \le |x_n x|$. Therefore f is continuous at x.
- 5. The function is not continuous at 0, because, $x_n = \frac{1}{2n\pi} \to 0$ but $f(\frac{1}{2n\pi}) \nrightarrow f(0)$.
- 6. Fix some $x_0 \in \mathbb{R}$. For every n, find x_n such that $x_0 \frac{1}{n} < x_n < x_0$ and $(f g)(x_n) = 0$. Allow $n \to \infty$ and apply the continuity.
- 7. Suppose x_0 is rational. Find an irrational sequence (x_n) such that $x_n \to x_0$. Then $f(x_n) = 1 \to f(x_0) = 0$. Therefore f is not continuous at x_0 . Let y_0 be rational. Show that f is not continuous at y_0 .
- 8. <u>Case 1:</u> $x_0 \neq \sqrt{n}$, n = 1, 2, ... It is clear that f is continuous at x_0 . <u>Case 2:</u> $x_0 = \sqrt{n}$ where $n = k^2$, for some positive integer k, i.e $x_0 = k$. In this case $\lim_{x \to k^-} f(x) = \lim_{x \to k^-} f(x) = 0$. <u>Case 3:</u> $x_0 = \sqrt{n}$ where $n \neq k^2$, for some positive integer k. In this case, $\lim_{x \to \sqrt{n}^+} f(x) = n \sin(\pi \sqrt{n})$ and $\lim_{x \to \sqrt{n}^-} f(x) = (n-1) \sin(\pi \sqrt{n})$.
- 9. Since $f(0) = f(0)^2$, f(0) = 1 and since f(x x) = f(0), $f(-x) = \frac{1}{f(x)}$. Let $x_0 \in \mathbb{R}$ and $x_n \to x_0$. By continuity at 0, $f(x_n x_0) \to 1$ and hence $f(x_n) \to \frac{1}{f(-x_0)} = f(x_0)$.
- 10. Suppose x > 0. By the assumption, $f(x) = f(x^{\frac{1}{2}}) = f(x^{\frac{1}{2^2}}) = f(x^{\frac{1}{2^n}})$. Since $x^{\frac{1}{2^n}} \to 1$, $f(x^{\frac{1}{2^n}}) \to f(1)$, i.e. f(x) = f(1). Now $f(-x) = f((-x)^2) = f(x^2) = f(x)$. At x = 0, by continuity, $\lim_{x\to 0} f(x) = f(0) = f(1)$. Therefore f(x) = f(1) for all $x \in \mathbb{R}$.
- 11. Suppose $\lim_{x\to\infty} f(x) = \beta$ for some β . Then there exists a positive real number M such that $|f(x) \beta| < 1$ for all x such that $x \geq M$. Then $|f(x)| \leq 1 + \beta$ for every x such that $x \geq M$. That is f is bounded on $\{x : x \geq M\}$. Also by continuity, f is bounded on [0, M]. Therefore f is bounded on $[0, \infty)$.
- 12. Let $f(x_n) \to f(x_0)$ for some $x_n, x_0 \in [0, 1]$. We show that $x_n \to x_0$ which proves that f^{-1} is continuous at $f(x_0)$. If (x_{n_k}) is any subsequence, then by Bolzano-Weierstrass theorem, there exists a subsequence $(x_{n_{k_i}})$ such that $x_{n_{k_i}} \to \alpha$ for some $\alpha \in [0, 1]$. By continuity $f(x_{n_{k_i}}) \to f(\alpha)$. By our assumption $f(\alpha) = f(x_0)$ and since f is one-one $x_0 = \alpha$. By Problem 8 of Practice problems 3, $x_n \to x_0$.
- 13. First observe that f(0) = 0 and f(n) = nf(1) for all $n \in \mathbb{N}$. Next note that f(-1) = -f(1) and f(m) = f(1)m for all $m \in \mathbb{Z}$. By observing $f(\frac{1}{n}) = f(1)\frac{1}{n}$ for all $n \in \mathbb{N}$, show that $f(\frac{m}{n}) = f(1)\frac{m}{n}$ for all $m \in \mathbb{Z}$ and $n \in \mathbb{N}$. Finally take any irrational number x and find $r_n \in \mathbb{Q}$ such that $r_n \to x$ and apply the continuity to conclude that f(x) = f(1)x.
- 14. (a) If for some $M \in \mathbb{N}$, $q_n < M$ for all $n \in \mathbb{N}$, then the set $\{x_n : n \in \mathbb{N}\}$ is finite which is not true. Similarly we can show that any subsequence of (q_n) cannot be bounded.
 - (b) Suppose x_0 is rational in (0,1) and $x_n \to x_0$ where x_n can be rational or irrational. Apply (a) to show that $f(x_n) \to 0 = f(x_0)$.
 - (c) Suppose x_0 is rational in (0,1). To show that f is discontinuous at x_0 , choose an irrational sequence (x_n) such that $x_n \to x_0$.