MTH102N

ASSIGNMENT-LA 1

(1) Let A, B be 2×2 real matrices such that $A\binom{x}{y}=B\binom{x}{y}$ for all $(x, y) \in \mathbb{R}^{2}$. Prove that $A=B$.
(2) It is easy to check that all the matrices given below

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right),
$$

satisfy the equation $A^{2}=I_{2}$. Explain geometrically why it is happening.
(3) Explain geometrically, why

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

(4) Show that the matrix multiplication is associative and distributive over addition of matrices.
(5) Given $A=\left(a_{i j}\right)$ define $A^{t}=\left(b_{i j}\right)$ where $b_{i j}=a_{j i}$.
(a) For two matrices A and B show that $(A+B)^{t}=A^{t}+B^{t}$ if $A+B$ is defined.
(b) $(A B)^{t}=B^{t} A^{t}$ if $A B$ is defined.
(6) Show that every square matrix can be written as a sum of a symmetric and a skew symmetric matrices. Further show that if A and B are symmetric then $A B$ is symmetric if and only if $A B=B A$.
(A matrix A is called symmetric if $A=A^{t}$ and skew symmetric if $A=-A^{t}$)
(7) Let A and B be two $n \times n$ invertible matrices. Show that $(A B)^{-1}=B^{-1} A^{-1}$.
(8) Apply Gauss elimination to the following system

$$
\begin{aligned}
2 x+y+2 z & =3 \\
3 x-y+4 z & =7 \\
4 x+3 y+6 z & =5
\end{aligned}
$$

(9) Let A be a 2×2 real invertible matrices. Show that the image under A of
(a) any straight line is a straight line
(b) any straight line passing through origin is a straight line passing through origin.
(c) any two parallel straight lines are parallel straight lines.
(10) Let A be a nilpotent $\left(A^{m}=0\right.$, for some $\left.m \geq 1\right)$ matrix. Show that $I+A$ is invertible.
(11) If a $n \times n$ real matrix A satisfies the relation $A A^{t}=0$ then show that $A=0$. Is the same true if A is a complex matrix? Show that if A is a $n \times n$ complex matrix and $A \bar{A}^{t}=0$ then $A=0$.
(12) Let A and B be two $n \times n$ matrices.
(a) If $A B=B A$ then show that $(A+B)^{m}=\sum_{i=1}^{m}\binom{m}{i} A^{m-i} B^{i}$.
(b) Show by an example that if $A B \neq B A$ then $a)$ need not hold.
(c) If $\operatorname{Tr}(A)=\sum_{i=1}^{n} a_{i i}$ then show that $\operatorname{Tr}(A B)=\operatorname{Tr}(B A)$. Hence show that if A is invertible then $\operatorname{Tr}\left(A B A^{-1}\right)=\operatorname{Tr}(B)$.
(13) Find the inverse of

$$
\left[\begin{array}{lll}
1 & 2 & 2 \\
2 & 1 & 2 \\
2 & 2 & 1
\end{array}\right]
$$

