MTH102N ASSIGNMENT–LA 1

- (1) Let A, B be 2 × 2 real matrices such that $A\begin{pmatrix} x\\ y \end{pmatrix} = B\begin{pmatrix} x\\ y \end{pmatrix}$ for all $(x,y) \in \mathbb{R}^2$. Prove that A = B.
- (2) It is easy to check that all the matrices given below

$$\left(\begin{array}{cc}1&0\\0&-1\end{array}\right),\ \left(\begin{array}{cc}-1&0\\0&1\end{array}\right),\ \left(\begin{array}{cc}-1&0\\0&-1\end{array}\right),\ \left(\begin{array}{cc}0&1\\1&0\end{array}\right),$$

satisfy the equation $A^2 = I_2$. Explain geometrically why it is happening.

(3) Explain geometrically, why

$$\left(\begin{array}{cc}1&0\\0&-1\end{array}\right)\left(\begin{array}{cc}-1&0\\0&1\end{array}\right)=\left(\begin{array}{cc}-1&0\\0&1\end{array}\right)\left(\begin{array}{cc}1&0\\0&-1\end{array}\right).$$

- (4) Show that the matrix multiplication is associative and distributive over addition of matrices.
- (5) Given $A = (a_{ij})$ define $A^t = (b_{ij})$ where $b_{ij} = a_{ji}$.
 - (a) For two matrices A and B show that $(A + B)^t = A^t + B^t$ if A + B is defined.
 - (b) $(AB)^t = B^t A^t$ if AB is defined.
- (6) Show that every square matrix can be written as a sum of a symmetric and a skew symmetric matrices. Further show that if A and B are symmetric then AB is symmetric if and only if AB = BA.

(A matrix A is called symmetric if $A = A^t$ and skew symmetric if $A = -A^t$)

- (7) Let A and B be two $n \times n$ invertible matrices. Show that $(AB)^{-1} = B^{-1}A^{-1}$.
- (8) Apply Gauss elimination to the following system

$$2x + y + 2z = 3$$

$$3x - y + 4z = 7$$

$$4x + 3y + 6z = 5$$

- (9) Let A be a 2×2 real invertible matrices. Show that the image under A of
 - (a) any straight line is a straight line
 - (b) any straight line passing through origin is a straight line passing through origin.
 - (c) any two parallel straight lines are parallel straight lines.

MTH102N ASSIGNMENT-LA 1

- (10) Let A be a nilpotent $(A^m = 0, \text{ for some } m \ge 1)$ matrix. Show that I + A is invertible.
- (11) If a $n \times n$ real matrix A satisfies the relation $AA^t = 0$ then show that A = 0. Is the same true if A is a complex matrix? Show that if A is a $n \times n$ complex matrix and $A\overline{A}^t = 0$ then A = 0.
- (12) Let A and B be two $n \times n$ matrices.
 - (a) If AB = BA then show that $(A + B)^m = \sum_{i=1}^m {m \choose i} A^{m-i} B^i$.
 - (b) Show by an example that if $AB \neq BA$ then a) need not hold.
 - (c) If Tr $(A) = \sum_{i=1}^{n} a_{ii}$ then show that Tr (AB) = Tr (BA). Hence show that if A is invertible then Tr $(ABA^{-1}) =$ Tr (B).
- (13) Find the inverse of

$$\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}.$$