MTH102N ASSIGNMENT–LA 2

- (1) Find all elements of S_3 (the set of all permutations of the set $\{1, 2, 3\}$) and determine which permutations are odd.
- (2) Let $\sigma \in S_4$ be given by

$$\left(\begin{array}{rrrrr} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 1 & 2 & 3 \end{array}\right)$$

- (a) Find sign of σ and sign of σ^{-1} .
- (b) What does $\sigma^2 := \sigma \circ \sigma$ do to (1, 2, 3, 4, 5)?
- (3) Find two 2×2 invertible matrices A and B such that $A \neq cB$, for any scalar c and A + B is not invertible.
- (4) Show that an $n \times n$ matrix A is invertible iff the system AX = Y has a solution for every $Y = (y_1, \ldots, y_n)^t$.
- (5) Let $A = [a_{ij}]$ be an invertible matrix and let $B = [p^{i-j}a_{ij}]$. Find the inverse of B also find |B|.
- (6) Let A be an $n \times n$ matrix. Show that |A| = 0 iff there exist x_1, \ldots, x_n , not all zero, such that $A(x_1, \ldots, x_n)^t = 0$.
- (7) Find the determinant of

$$\begin{bmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{bmatrix}.$$

- (8) Find, by definition, the determinant of $A = [a_{ij}]$ in each of the following cases:
 - (a) A is a diagonal matrix
 - (b) A is a lower triangular matrix (i.e. $a_{ij} = 0$ for all j > i)
 - (c) A is an upper triangular matrix (i.e. $a_{ij} = 0$ for all j < i)
- (9) For an $n \times n$ matrix $A = [a_{ij}]$ prove that $|A| = |A^t|$.

(10) The numbers 1375, 1287, 4191 and 5731 are all divisible by 11. Prove that the determinant of the matrix

is also divisible by 11.

(11) Find the determinant of

1	2	3	4	 n
2	2	3	4	 n
3	3	3	4	 n
				 n
n	n	n	n	 n
-				

- (12) For a complex matrix $A = [a_{ij}]$, let $\overline{A} = [\overline{a_{ij}}]$ and $A^* = \overline{A}^t$. Show that $|\overline{A}| = |A^*| = |\overline{A}|$. Therefore if A is Hermitian (that is $A^* = A$) then its determinant is real.
- (13) A real matrix A is said to be orthogonal if $AA^t = I$. Show that if A is orthogonal then $|A| = \pm 1$.
- (14) Let A be an invertible square matrix with integer entries. Show that A^{-1} has integer entries if and only if $|A| = \pm 1$.