MTH102N
 ASSIGNMENT-LA 2

(1) Find all elements of S_{3} (the set of all permutations of the set $\{1,2,3\}$) and determine which permutations are odd.
(2) Let $\sigma \in S_{4}$ be given by

$$
\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
5 & 4 & 1 & 2 & 3
\end{array}\right)
$$

(a) Find sign of σ and sign of σ^{-1}.
(b) What does $\sigma^{2}:=\sigma \circ \sigma$ do to $(1,2,3,4,5)$?
(3) Find two 2×2 invertible matrices A and B such that $A \neq c B$, for any scalar c and $A+B$ is not invertible.
(4) Show that an $n \times n$ matrix A is invertible iff the system $A X=Y$ has a solution for every $Y=\left(y_{1}, \ldots, y_{n}\right)^{t}$.
(5) Let $A=\left[a_{i j}\right]$ be an invertible matrix and let $B=\left[p^{i-j} a_{i j}\right]$. Find the inverse of B also find $|B|$.
(6) Let A be an $n \times n$ matrix. Show that $|A|=0$ iff there exist x_{1}, \ldots, x_{n}, not all zero, such that $A\left(x_{1}, \ldots, x_{n}\right)^{t}=0$.
(7) Find the determinant of

$$
\left[\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n-1} \\
1 & x_{2} & x_{2}^{2} & \cdots & x_{2}^{n-1} \\
\cdot & \cdot & \cdot & \cdots & \cdot \\
\cdot & \cdot & \cdot & \cdots & \cdot \\
1 & x_{n} & x_{n}^{2} & \cdots & x_{n}^{n-1}
\end{array}\right]
$$

(8) Find, by definition, the determinant of $A=\left[a_{i j}\right]$ in each of the following cases:
(a) A is a diagonal matrix
(b) A is a lower triangular matrix (i.e. $a_{i j}=0$ for all $j>i$)
(c) A is an upper triangular matrix (i.e. $a_{i j}=0$ for all $j<i$)
(9) For an $n \times n$ matrix $A=\left[a_{i j}\right]$ prove that $|A|=\left|A^{t}\right|$.
(10) The numbers $1375,1287,4191$ and 5731 are all divisible by 11. Prove that the determinant of the matrix
$\left[\begin{array}{llll}1 & 1 & 4 & 5 \\ 3 & 2 & 1 & 7 \\ 7 & 8 & 9 & 3 \\ 5 & 7 & 1 & 1\end{array}\right]$
is also divisible by 11 .
(11) Find the determinant of

$$
\left[\begin{array}{cccccc}
1 & 2 & 3 & 4 & \ldots & n \\
2 & 2 & 3 & 4 & \ldots & n \\
3 & 3 & 3 & 4 & \ldots & n \\
. & . . & . & . . & \ldots & n \\
n & n & n & n & \ldots & n
\end{array}\right]
$$

(12) For a complex matrix $A=\left[a_{i j}\right]$, let $\bar{A}=\left[\overline{a_{i j}}\right]$ and $A^{*}=\bar{A}^{t}$. Show that $|\bar{A}|=\left|A^{*}\right|=\overline{|A|}$. Therefore if A is Hermitian (that is $A^{*}=A$) then its determinant is real.
(13) A real matrix A is said to be orthogonal if $A A^{t}=I$. Show that if A is orthogonal then $|A|= \pm 1$.
(14) Let A be an invertible square matrix with integer entries. Show that A^{-1} has integer entries if and only if $|A|= \pm 1$.

