MTH102N
 ASSIGNMENT-LA 3

(1) Show that the space of all real (respectively complex) matrices is a vector space over \mathbb{R} (respectively \mathbb{C}) with respect to the usual addition and scalar multiplication.
(2) Let $S=$ The set of all $n \times n$ skew hermitian matrices. Check whether S is a real (or complex) vector space under usual addition and scalar multiplication of matrices.
(3) In \mathbb{R}, consider the addition $x \oplus y=x+y-1$ and $a . x=a(x-1)+1$. Show that \mathbb{R} is a real vector space with respect to these operations with additive identity 1.
(4) Which of the following are subspaces of \mathbb{R}^{3} :
(a) $\{(x, y, z) \mid x \geq 0\}$, (b) $\{(x, y, z) \mid x+y=z\}$, (c) $\left\{(x, y, z) \mid x=y^{2}\right\}$.
(5) Which of the following are the subspaces of \mathbb{C}^{3} (over \mathbb{C}):
(a) $\left\{\left(z_{1}, z_{2}, z_{3}\right) \mid z_{1}\right.$ is real $\}$, (b) $\left\{\left(z_{1}, z_{2}, z_{3}\right) \mid z_{1}+z_{2}=10 z_{3}\right\}$.
(6) Find the condition on real numbers a, b, c, d so that the set $\{(x, y, z) \mid a x+$ $b y+c z=d\}$ is a subspace of \mathbb{R}^{3}.
(7) Show that $W=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right): x_{4}-x_{3}=x_{2}-x_{1}\right\}$ is a subspace of \mathbb{R}^{4}, spanned by $(1,0,0,-1),(0,1,0,1)$ and $(0,0,1,1)$.
(8) Let W_{1} and W_{2} be subspaces of a vector space V such that $W_{1} \cup W_{2}$ is also a subspace. Prove that one of the spaces $W_{i}, i=1,2$ is contained in the other.
(9) Find all the subspaces of \mathbb{R}^{2}.
(10) Let $x, y, z \in V$ such that $x+2 y+7 z=0$. Show that $L(\{x, y\})=L(\{y, z\})=$ $L(\{z, x\})$.
(11) Show that $(1,0),(i, 0) \in \mathbb{C}^{2}$ are linearly independent over \mathbb{R} and linearly dependent over \mathbb{C}.
(12) Let V be a vector space over \mathbb{C} and let $x_{1}, \ldots, x_{r} \in V$ be linearly independent. Show that $x_{1}, \ldots, x_{r}, i x_{1}, \ldots, i x_{r}$ are linearly independent over \mathbb{R}.
(13) Discuss the linear dependence/linear independence of the following sets:
(a) $S=\{(1,0,0),(1,1,0),(1,1,1)\}$ of \mathbb{R}^{3}.
(b) $S=\{(1,0,0,0),(1,1,0,0),(1,2,0,0),(1,1,1,1)\}$ of \mathbb{R}^{4}.
(c) $S=\{(1, i, 0),(1,0,1),(i+2,-1,2)\}$ of $\mathbb{C}^{3}(\mathbb{C})$.
(d) $S=\{(1, i, 0),(1,0,1),(i+2,-1,2)\}$ of $\mathbb{C}^{3}(\mathbb{R})$.
(14) Under what conditions on α are the vectors $(1+\alpha, 1-\alpha)$ and $(1-\alpha, 1+\alpha)$ of \mathbb{C}^{2} are linearly independent over \mathbb{R} ?

