MTH102N ASSIGNMENT–LA 3

- Show that the space of all real (respectively complex) matrices is a vector space over ℝ (respectively ℂ) with respect to the usual addition and scalar multiplication.
- (2) Let S =The set of all $n \times n$ skew hermitian matrices. Check whether S is a real (or complex) vector space under usual addition and scalar multiplication of matrices.
- (3) In \mathbb{R} , consider the addition $x \oplus y = x + y 1$ and a.x = a(x 1) + 1. Show that \mathbb{R} is a real vector space with respect to these operations with additive identity 1.
- (4) Which of the following are subspaces of \mathbb{R}^3 :

(a) $\{(x, y, z) \mid x \ge 0\}$, (b) $\{(x, y, z) \mid x + y = z\}$, (c) $\{(x, y, z) \mid x = y^2\}$.

(5) Which of the following are the subspaces of \mathbb{C}^3 (over \mathbb{C}):

(a) $\{(z_1, z_2, z_3) \mid z_1 \text{ is real}\}, (b) \{(z_1, z_2, z_3) \mid z_1 + z_2 = 10z_3\}.$

- (6) Find the condition on real numbers a, b, c, d so that the set $\{(x, y, z) \mid ax + by + cz = d\}$ is a subspace of \mathbb{R}^3 .
- (7) Show that $W = \{(x_1, x_2, x_3, x_4) : x_4 x_3 = x_2 x_1\}$ is a subspace of \mathbb{R}^4 , spanned by (1, 0, 0, -1), (0, 1, 0, 1) and (0, 0, 1, 1).
- (8) Let W_1 and W_2 be subspaces of a vector space V such that $W_1 \cup W_2$ is also a subspace. Prove that one of the spaces W_i , i = 1, 2 is contained in the other.
- (9) Find all the subspaces of \mathbb{R}^2 .
- (10) Let $x, y, z \in V$ such that x + 2y + 7z = 0. Show that $L(\{x, y\}) = L(\{y, z\}) = L(\{z, x\})$.
- (11) Show that $(1,0), (i,0) \in \mathbb{C}^2$ are linearly independent over \mathbb{R} and linearly dependent over \mathbb{C} .

MTH102N ASSIGNMENT-LA 3

- (12) Let V be a vector space over \mathbb{C} and let $x_1, \ldots, x_r \in V$ be linearly independent. Show that $x_1, \ldots, x_r, ix_1, \ldots, ix_r$ are linearly independent over \mathbb{R} .
- (13) Discuss the linear dependence/linear independence of the following sets:
 - (a) $S = \{(1,0,0), (1,1,0), (1,1,1)\}$ of \mathbb{R}^3 .
 - (b) $S = \{(1, 0, 0, 0), (1, 1, 0, 0), (1, 2, 0, 0), (1, 1, 1, 1)\}$ of \mathbb{R}^4 .
 - (c) $S = \{(1, i, 0), (1, 0, 1), (i + 2, -1, 2)\}$ of $\mathbb{C}^3(\mathbb{C})$.
 - (d) $S = \{(1, i, 0), (1, 0, 1), (i + 2, -1, 2)\}$ of $\mathbb{C}^3(\mathbb{R})$.
- (14) Under what conditions on α are the vectors $(1 + \alpha, 1 \alpha)$ and $(1 \alpha, 1 + \alpha)$ of \mathbb{C}^2 are linearly independent over \mathbb{R} ?