MTH102N ASSIGNMENT–LA 4

- (1) Determine whether the following sets of vectors is linearly independent or not
 - (a) $\{(1, 0, 2, 1), (1, 3, 2, 1), (4, 1, 2, 2)\}$ in \mathbb{R}^4 .
 - (b) $\{(1,2,6), (-1,3,4), (-1,-4,-2)\}$ in \mathbb{R}^3 .
 - (c) $\{u+v, v+w, w+u\}$ in a vector space V given that $\{u, v, w\}$ is linearly independent.
- (2) Let $\{w_1, w_2, \ldots, w_n\}$ be a basis of the finite dimensional vector space V. Let v be any non zero vector in V. Show that there exists w_i such that if we replace w_i by v then we still have a basis.
- (3) Find the dimension of the following vector spaces
 - (a) $\{A : A \text{ is } n \times n \text{ real upper} \text{traingular matrices}\}.$
 - (b) $\{A : A \text{ is } n \times n \text{ real symmetric matrices}\}$
 - (c) $\{A : A \text{ is } n \times n \text{ real matrices with tr } A = 0\}$
 - (d) { $A: A \text{ is } n \times n \text{ real matrices with } A + A^t = 0$ }
- (4) Let P_n(ℝ) = The vector space of polynomials with real coefficients and degree less or equal to n. Show that the set {x + 1, x² + x − 1, x² − x + 1} is a basis for P₂(ℝ). Hence determine the coordinates of the following elements: 2x − 1, 1 + x², x² + 5x − 1 with respect to the above basis.
- (5) Describe all possible ways in which two planes (passing through origin) in \mathbb{R}^3 could intersect.
- (6) Let W be a subspace of V
 - (a) Show that there is a subspace U of V such that $W \cap U = \{0\}$ and U + W = V.
 - (b) Show that there is no subspace U such that $U \cap W = \{0\}$ and dim $U + \dim W > \dim V$.
- (7) Let $W_1 = L\{(1, 1, 0), (-1, 1, 0)\}$ and $W_2 = L\{(1, 0, 2), (-1, 0, 4)\}$. Show that $W_1 + W_2 = \mathbb{R}^3$. Give an example of a vector $v \in \mathbb{R}^3$ such that v can be written in two different ways in the form $v = v_1 + v_2$, where $v_1 \in W_1, v_2 \in W_2$.
- (8) Determine which of the following are linear transformations $T: V \longrightarrow W$, where the vector spaces V, W are given:
 - (a) $V = W = \mathbb{R}^3$; T(x, y, z) = (2x + y, z, |x|)

MTH102N ASSIGNMENT-LA 4

- (b) $V = W = M_2(\mathbb{R})$, the space of all 2×2 real matrices; (i) $T(A) = A^t$, (ii) T(A) = I + A, (iii) $T(A) = A^2$, (iv) $T(A) = BAB^{-1}$, where B is some fixed 2×2 matrix.
- (9) Let $T : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ be a linear transformation such that T(1,0,0) = (1,0,0), T(1,1,0) = (1,1,1) and T(1,1,1) = (1,1,0). Find (a) T(x,y,z) (b) ker(T)(c) R(T). Also show that $T^3 = T$.
- (10) Find a linear transformation $T : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ with (a) $R(T) = L(\{(1, 1, 1)\})$ (b) $R(T) = L(\{(1, 2, 3), (1, 3, 2)\}).$
- (11) Let $T : \mathbb{C} \longrightarrow \mathbb{C}$ be the map $T(z) = \overline{z}$. Show that T is \mathbb{R} -linear but not \mathbb{C} -linear.
- (12) Find all linear transformations from $\mathbb{R}^n \longrightarrow \mathbb{R}$.
- (13) Let V, W be vector spaces and let L(V, W) be the vector space of all linear transformations from V to W. Show that $\dim L(V, W) = \dim V.\dim W$.
- (14) let $T: V \longrightarrow W$ and $S: W \longrightarrow U$ be linear transformations. Show that the map $S \circ T: V \longrightarrow U$ is a linear transformation.
- (15) Show that a linear transformation is one-one if and only if null-space of T is $\{0\}$.