MTH102N
 ASSIGNMENT-LA 4

(1) Determine whether the following sets of vectors is linearly independent or not
(a) $\{(1,0,2,1),(1,3,2,1),(4,1,2,2)\}$ in \mathbb{R}^{4}.
(b) $\{(1,2,6),(-1,3,4),(-1,-4,-2)\}$ in \mathbb{R}^{3}.
(c) $\{u+v, v+w, w+u\}$ in a vector space V given that $\{u, v, w\}$ is linearly independent.
(2) Let $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ be a basis of the finite dimensional vector space V. Let v be any non zero vector in V. Show that there exists w_{i} such that if we replace w_{i} by v then we still have a basis.
(3) Find the dimension of the following vector spaces
(a) $\{A: A$ is $n \times n$ real upper - traingular matrices $\}$.
(b) $\{A: A$ is $n \times n$ real symmetric matrices $\}$
(c) $\{A: A$ is $n \times n$ real matrices with $\operatorname{tr} A=0\}$
(d) $\left\{A: A\right.$ is $n \times n$ real matrices with $\left.A+A^{t}=0\right\}$
(4) Let $P_{n}(\mathbb{R})=$ The vector space of polynomials with real coefficients and degree less or equal to n. Show that the set $\left\{x+1, x^{2}+x-1, x^{2}-x+1\right\}$ is a basis for $P_{2}(\mathbb{R})$. Hence determine the coordinates of the following elements: $2 x-1,1+x^{2}, x^{2}+5 x-1$ with respect to the above basis.
(5) Describe all possible ways in which two planes (passing through origin) in \mathbb{R}^{3} could intersect.
(6) Let W be a subspace of V
(a) Show that there is a subspace U of V such that $W \cap U=\{0\}$ and $U+W=V$.
(b) Show that there is no subspace U such that $U \cap W=\{0\}$ and $\operatorname{dim} U+$ $\operatorname{dim} W>\operatorname{dim} V$.
(7) Let $W_{1}=L\{(1,1,0),(-1,1,0)\}$ and $W_{2}=L\{(1,0,2),(-1,0,4)\}$. Show that $W_{1}+W_{2}=\mathbb{R}^{3}$. Give an example of a vector $v \in \mathbb{R}^{3}$ such that v can be written in two different ways in the form $v=v_{1}+v_{2}$, where $v_{1} \in W_{1}, v_{2} \in W_{2}$.
(8) Determine which of the following are linear transformations $T: V \longrightarrow W$, where the vector spaces V, W are given:
(a) $V=W=\mathbb{R}^{3} ; T(x, y, z)=\underset{1}{(2 x+y, z,|x|)}$
(b) $V=W=M_{2}(\mathbb{R})$, the space of all 2×2 real matrices; (i) $T(A)=A^{t}$, (ii) $T(A)=I+A$, (iii) $T(A)=A^{2}$, (iv) $T(A)=B A B^{-1}$, where B is some fixed 2×2 matrix.
(9) Let $T: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ be a linear transformation such that $T(1,0,0)=(1,0,0)$, $T(1,1,0)=(1,1,1)$ and $T(1,1,1)=(1,1,0)$. Find (a) $T(x, y, z)$ (b) $\operatorname{ker}(T)$ (c) $R(T)$. Also show that $T^{3}=T$.
(10) Find a linear transformation $T: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ with (a) $R(T)=L(\{(1,1,1)\})$ (b) $R(T)=L(\{(1,2,3),(1,3,2)\})$.
(11) Let $T: \mathbb{C} \longrightarrow \mathbb{C}$ be the map $T(z)=\bar{z}$. Show that T is \mathbb{R}-linear but not \mathbb{C}-linear.
(12) Find all linear transformations from $\mathbb{R}^{n} \longrightarrow \mathbb{R}$.
(13) Let V, W be vector spaces and let $L(V, W)$ be the vector space of all linear transformations from V to W. Show that $\operatorname{dim} L(V, W)=\operatorname{dim} V \cdot \operatorname{dim} W$.
(14) let $T: V \longrightarrow W$ and $S: W \longrightarrow U$ be linear transformations. Show that the map $S \circ T: V \longrightarrow U$ is a linear transformation.
(15) Show that a linear transformation is one-one if and only if null-space of T is $\{0\}$.

