MTH102N ASSIGNMENT-LA 5

- (1) Let C be an $m \times n$ matrix and let $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be the linear transformation defined by C. Show that the matrix of T with respect to the standard bases of \mathbb{R}^n and \mathbb{R}^m is C.
- (2) Let the linear map $T : \mathbb{R}^2 \to \mathbb{R}^2$ be given by T(x, y) = (ax + by, cx + dy). Find the matrix of T with respect to the standard basis of \mathbb{R}^2 . Now do the same by considering the basis $\{(0, 1), (1, 0)\}$ on domain and range of T.
- (3) Consider the linear map $T : \mathbb{C} \to \mathbb{C}$ given by T(z) = iz. By considering the basis $\{1, i\}$ of \mathbb{C} (over \mathbb{R}) on domain and codomain of T find the matrix of T.
- (4) Let $T: V \to V$ be a linear map such that Ker(T) = Range(T). What can you say about T^2 . On \mathbb{R}^2 can you give example of such a map?
- (5) Does there exist a linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^4$ such that $\operatorname{Range}(T) = \{(x_1, x_2, x_3, x_4) : x_1 + x_2 + x_3 + x_4 = 0\}$?
- (6) Let V be a vector space of dimension n and let $A = \{v_1, \ldots, v_n\}$ be an ordered basis of V. Suppose $w_1, \ldots, w_n \in V$ and let $(a_{1j}, \ldots, a_{nj})^t$ denote the coordinates of w_j with respect to A. Put $C = [a_{ij}]$.

Then show that w_1, \ldots, w_n is a basis of V if and only if C is invertible.

- (7) Find the range and kernel of $T : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ given by T(x, y, z) = (x + z, x + y + 2z, 2x + y + 3z).
- (8) Let T be a linear transformation from an n dimensional vector space V to an m dimensional vector space W and let C be the matrix of T with respect to a basis A of V and B of W. Show that (a) ρ(T) = rank(C); (b) T is one-one if and only if rank(C) = n; (c) T is onto if and only if rank(C) = m; (d) T is an isomorphism (that is, one-one and onto) if and only if m = rank(C) = n.
- (9) Let \langle , \rangle be any inner product on \mathbb{R}^n . Show that $\langle x, y \rangle = x^t A y$ for all vectors $x, y \in \mathbb{R}^n$ where A is the symmetric $n \times n$ matrix whose (i, j)th entry is $\langle e_i, e_j \rangle$, the vector e_i being the standard basis vectors of \mathbb{R}^n .
- (10) Show that the norm of a vector in a vector space V has the following three properties
 - (a) $||v|| \ge 0$ and ||v|| = 0 if and only if v = 0.

MTH102N ASSIGNMENT-LA 5

- (b) $\|\lambda v\| = |\lambda| \|v\|$ for all $\lambda \in \mathbb{R}$ and $v \in V$.
- (c) $||v + w|| \le ||v|| + ||w||$ for all $v, w \in V$.
- (11) Use Gram-Schmidt process to transform each of the following into an orthonormal basis;
 - (a) $\{(1,1,1), (1,0,1), (0,1,2)\}$ for \mathbb{R}^3 with dot product.
 - (b) Same set as in (i) but using the inner product defined by $\langle (x, y, z), (x', y', z') \rangle = xx' + 2yy' + 3zz'.$
- (12) Let U be a proper subspace of the inner product space V. Let U[⊥] = {v ∈ V :
 < v, u >= 0 ∀u ∈ U}. Show that U[⊥] is a subspace of V (it is called orthogonal complement of U). Let U = {α(1,2,3) : α ∈ ℝ} be a subspace of ℝ³ with scalar product. Find U[⊥]. Also, show that S[⊥] is a subspace of V for any arbitrary subset S of V.
- (13) Let U_1 and U_2 be subspaces of a vector space V. We say that V is the *direct sum* of U_1 and U_2 , notation $V = U_1 \oplus U_2$, provided that each element of V has a unique expression in the form of v = x + y where $x \in U_1$ and $y \in U_2$.
 - (a) Show that $V = U_1 \oplus U_2$ if and only if $U_1 \cap U_2 = \{0\}$ and each element of V is expressible in the form v = x + y where $x \in U_1$ and $y \in U_2$.
 - (b) Show that $V = U \oplus U^{\perp}$ for any subspace U of the inner product space V.
- (14) Let \mathbb{R}^n and \mathbb{R}^m be equipped with usual dot product and let A be an $m \times n$ matrix with real entries. Show that Ker $A = (\text{Im } A^t)^{\perp}$ and $\text{Im } A = (\text{Ker } A^t)^{\perp}$.
- (15) Let A be an $n \times n$ matrix and b be a column vector in \mathbb{R}^n . Let $x = (x_i)$ be a column vectors of unknowns. Use the previous problem to show that only one of the following can have a solution for x
 - (i) Ax = b
 - (ii) $A^t x = 0$ and $x^t b \neq 0$
 - (This is referred as *Fredholm Alternative*)
- (16) Let A be an $n \times n$ real matrix. Show that the following are equivalent
 - (a) A is orthogonal.
 - (b) A preserves length, i.e. $||Av|| = ||v|| \quad \forall v \in \mathbb{R}^n$.
 - (c) A is invertible and $A^t = A^{-1}$.
 - (d) The rows of A forms and orthonormal basis of \mathbb{R}^n .
 - (e) The columns of A forms an orthonormal basis of \mathbb{R}^n .