MTH102N
 ASSIGNMENT-LA 5

(1) Let C be an $m \times n$ matrix and let $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be the linear transformation defined by C. Show that the matrix of T with respect to the standard bases of \mathbb{R}^{n} and \mathbb{R}^{m} is C.
(2) Let the linear map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by $T(x, y)=(a x+b y, c x+d y)$. Find the matrix of T with respect to the standard basis of \mathbb{R}^{2}. Now do the same by considering the basis $\{(0,1),(1,0)\}$ on domain and range of T.
(3) Consider the linear map $T: \mathbb{C} \rightarrow \mathbb{C}$ given by $T(z)=i z$. By considering the basis $\{1, i\}$ of \mathbb{C} (over \mathbb{R}) on domain and codomain of T find the matrix of T.
(4) Let $T: V \rightarrow V$ be a linear map such that $\operatorname{Ker}(T)=\operatorname{Range}(T)$. What can you say about T^{2}. On \mathbb{R}^{2} can you give example of such a map?
(5) Does there exist a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{4}$ such that Range $(T)=$ $\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right): x_{1}+x_{2}+x_{3}+x_{4}=0\right\} ?$
(6) Let V be a vector space of dimension n and let $A=\left\{v_{1}, \ldots, v_{n}\right\}$ be an ordered basis of V. Suppose $w_{1}, \ldots, w_{n} \in V$ and let $\left(a_{1 j}, \ldots, a_{n j}\right)^{t}$ denote the coordinates of w_{j} with respect to A. Put $C=\left[a_{i j}\right]$.

Then show that w_{1}, \ldots, w_{n} is a basis of V if and only if C is invertible.
(7) Find the range and kernel of $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ given by $T(x, y, z)=(x+z, x+y+2 z, 2 x+y+3 z)$.
(8) Let T be a linear transformation from an n dimensional vector space V to an m dimensional vector space W and let C be the matrix of T with respect to a basis A of V and B of W. Show that (a) $\rho(T)=\operatorname{rank}(C)$; (b) T is one-one if and only if $\operatorname{rank}(C)=n$; (c) T is onto if and only if $\operatorname{rank}(C)=m$; (d) T is an isomorphism (that is, one-one and onto) if and only if $m=\operatorname{rank}(C)=n$.
(9) Let $<$,$\rangle be any inner product on \mathbb{R}^{n}$. Show that $\langle x, y\rangle=x^{t} A y$ for all vectors $x, y \in \mathbb{R}^{n}$ where A is the symmetric $n \times n$ matrix whose (i, j) th entry is $\left\langle e_{i}, e_{j}\right\rangle$, the vector e_{i} being the standard basis vectors of \mathbb{R}^{n}.
(10) Show that the norm of a vector in a vector space V has the following three properties
(a) $\|v\| \geq 0$ and $\|v\|=0$ if and only if $v=0$.
(b) $\|\lambda v\|=|\lambda|\|v\|$ for all $\lambda \in \mathbb{R}$ and $v \in V$.
(c) $\|v+w\| \leq\|v\|+\|w\|$ for all $v, w \in V$.
(11) Use Gram-Schmidt process to transform each of the following into an orthonormal basis;
(a) $\{(1,1,1),(1,0,1),(0,1,2)\}$ for \mathbb{R}^{3} with dot product.
(b) Same set as in (i) but using the inner product defined by $<$ $(x, y, z),\left(x^{\prime}, y^{\prime}, z^{\prime}\right)>=x x^{\prime}+2 y y^{\prime}+3 z z^{\prime}$.
(12) Let U be a proper subspace of the inner product space V. Let $U^{\perp}=\{v \in V$: $\langle v, u\rangle=0 \forall u \in U\}$. Show that U^{\perp} is a subspace of V (it is called orthogonal complement of U). Let $U=\{\alpha(1,2,3): \alpha \in \mathbb{R}\}$ be a subspace of \mathbb{R}^{3} with scalar product. Find U^{\perp}. Also, show that S^{\perp} is a subspace of V for any arbitary subset S of V.
(13) Let U_{1} and U_{2} be subspaces of a vector space V. We say that V is the direct sum of U_{1} and U_{2}, notation $V=U_{1} \oplus U_{2}$, provided that each element of V has a unique expression in the form of $v=x+y$ where $x \in U_{1}$ and $y \in U_{2}$.
(a) Show that $V=U_{1} \oplus U_{2}$ if and only if $U_{1} \cap U_{2}=\{0\}$ and each element of V is expressible in the form $v=x+y$ where $x \in U_{1}$ and $y \in U_{2}$.
(b) Show that $V=U \oplus U^{\perp}$ for any subspace U of the inner product space V.
(14) Let \mathbb{R}^{n} and \mathbb{R}^{m} be equipped with usual dot product and let A be an $m \times n$ matrix with real entries. Show that $\operatorname{Ker} A=\left(\operatorname{Im} A^{t}\right)^{\perp}$ and $\operatorname{Im} A=\left(\operatorname{Ker} A^{t}\right)^{\perp}$.
(15) Let A be an $n \times n$ matrix and b be a column vector in \mathbb{R}^{n}. Let $x=\left(x_{i}\right)$ be a column vectors of unknowns. Use the previous problem to show that only one of the following can have a solution for x
(i) $A x=b$
(ii) $A^{t} x=0$ and $x^{t} b \neq 0$
(This is referred as Fredholm Alternative)
(16) Let A be an $n \times n$ real matrix. Show that the following are equivalent
(a) A is orthogonal.
(b) A preserves length, i.e. $\|A v\|=\|v\| \forall v \in \mathbb{R}^{n}$.
(c) A is invertible and $A^{t}=A^{-1}$.
(d) The rows of A forms and orthonormal basis of \mathbb{R}^{n}.
(e) The columns of A forms an orthonormal basis of \mathbb{R}^{n}.

