MTH102N
 ASSIGNMENT-C1

1. For any $z \in \mathbb{C}$, show that
(a) $\operatorname{Re}(i z)=-\operatorname{Im} z$.
(b) z is a ral number if and only if $z=\bar{z}$
(c) $|\operatorname{Re} z| \leq|z|$ and $|\operatorname{Im} z| \leq|z|$.
(d) $\left|\operatorname{Im}\left(1-\bar{z}+z^{2}\right)\right|<3 \forall z<1$.
2. Prove the following:
(a) $\left|z_{1}+z_{2}\right|^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+2 \operatorname{Re}\left(z_{1} \bar{z}_{2}\right)$.
(b) $\left|z_{1}+z_{2}\right|^{2}+\left|z_{1}-z_{2}\right|^{2}=2\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)$
(c) $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$ and equality holds if and only if one is a nonnegative scalar multiple of the other.
3. Show that the equation $z^{4}+z+5=0$ has no solution in the $\operatorname{set}\{z \in \mathbb{C}:|z|<1\}$.
4. Let $\lambda \in \mathbb{C}$ be such that $0<|\lambda|<1$. Then show that
(a) $|z-\lambda|<|1-\bar{\lambda} z|$ if $|z|<1$.
(b) $|z-\lambda|=|1-\bar{\lambda} z|$ if $|z|=1$.
(c) $|z-\lambda|>|1-\bar{\lambda} z|$ if $|z|>1$.
5. Sketch each of the following set of complex numbers.
(a) $S=\{z:|z-2+i| \leq 1\}$.
(b) $S=\{z:|2 z+3|>4\}$
(c) $S=\{z:|z-1|=|z-3|\}$.
(d) $S=\{z: 1<|z|<2, \operatorname{Re} z \neq 0\}$
6. If z and w are in \mathbb{C} such that $\operatorname{Im}(z)>0$ and $\operatorname{Im}(w)>0$, show that $\left|\frac{z-w}{z-\bar{w}}\right|<1$.
7. Let $z=\frac{i}{-2-2 i}$
(a) Express z in polar form.
(b) Express z^{5} in polar and cartesian form.
(c) Express $z^{1 / 5}$ in Cartesian form.
8. Prove that for $z, w \in \mathbb{C}$

$$
|1-z \bar{w}|^{2}-|z-w|^{2}=\left(1-|z|^{2}\right)\left(1-|w|^{2}\right)
$$

Using above deduce that if $|w|<1$ then the function $f_{w}(z)=\frac{z-w}{1-z \bar{w}}$ maps the unit disc $D=\{z \in \mathbb{C}:|z|<1\}$ onto itself and the unit circle $S=\{z \in \mathbb{C}:|z|=1\}$ onto itself.
9. Prove de Moivre's theorem: Given $n \in \mathbb{N}$ and $\theta \in \mathbb{R},(\cos \theta+i \sin \theta)^{n}=\cos n \theta+$ $i \sin n \theta$. Use this result to find
a) $(1+i \sqrt{3})^{99}$
b) $\left(\frac{1+i}{\sqrt{2}}\right)^{10}$.
10. Show that $1+z+z^{2}+\cdots+z^{n}=\frac{1-z^{n+1}}{1-z}$ for any complex number z except $z=1$, and deduce that

$$
\sum_{k=0}^{n} \cos (k \theta)=\frac{1}{2}+\frac{\sin \left(n+\frac{1}{2}\right) \theta}{2 \sin \frac{\theta}{2}}
$$

$0<\theta<2 \pi$.
11. Discuss the convergence of the following sequences:
a) $\left\{\cos \left(\frac{n \pi}{2}\right)+i^{n}\right\}$,
b) $\left\{i^{n} \sin \left(\frac{n \pi}{4}\right)\right\}$,
c) $\left\{\frac{1}{n}+i^{n}\right\}$.
12. Let $z=r e^{i \theta}, w=R e^{i \phi}, 0 \leq r<R$. For a fixed w find

$$
\lim _{r \rightarrow R} \operatorname{Re}\left(\frac{w+z}{w-z}\right) .
$$

13. If $1=z_{0}, z_{1}, \ldots, z_{n-1}$ are distinct $n^{\text {th }}$ roots of unity, prove that $\prod_{j=1}^{n-1}\left(z-z_{j}\right)=$ $\sum_{j=0}^{n-1} z^{j}$.
14. Check if the following functions can be prescribed a value at $z=0$, so that they become continuous: $f(z)=\frac{|z|^{2}}{z}, f(z)=\frac{z+1}{|z|-1}, f(z)=\frac{\bar{z}}{z}$.
