MTH102N
 ASSIGNMENT-C2

Notation: $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$.
(1) Find polar representation of all complex numbers satisfying $z^{5}=-4$.
(2) Show that the function $f(z)=f(x+i y)=\sqrt{|x y|}$ satisfies Cauchy Riemann Equations at 0 but it is not differentiable at 0 .
(3) Let $f(z)=z^{3}$. For $z_{1}=1$ and $z_{2}=i$, show that there do not exist any point c on the line $y=1-x$ joining z_{1} and z_{2} such that

$$
\frac{f\left(z_{1}\right)-f\left(z_{2}\right)}{z_{1}-z_{2}}=f^{\prime}(c)
$$

(Mean value theorem does not extend to complex derivatives).
(4) Suppose that $g: \mathbb{D} \rightarrow \mathbb{C}$ is an analytic function with zero derivative. Prove that g is a constant function.

Suppose that $g: \mathbb{D} \cup\{z:|z-3|<1\} \rightarrow \mathbb{C}$ is an analytic function with zero derivative. Is g necessaryly a constant function?
(5) If f is a differentiable function in an open set Ω, prove that

$$
\frac{1}{2}\left(\frac{\partial f}{\partial x}+i \frac{\partial f}{\partial y}\right)=0, \text { and } f^{\prime}=\frac{1}{2}\left(\frac{\partial f}{\partial x}-i \frac{\partial f}{\partial y}\right)
$$

(6) Let U be an open set and $f: U \rightarrow \mathbb{C}$ be a differentiable function. Let $\bar{U}:=\{\bar{z}: z \in U\}$. Show that the function $g: \bar{U} \rightarrow \mathbb{C}$ defined by $g(z):=\overline{f(\bar{z})}$ is differentiable on \bar{U}.
(7) Let Ω be an open connected subset of \mathbb{C} and $f: \Omega \rightarrow \mathbb{C}$ be a differentiable function. Show that the function $f=u+i v$ is constant if
(a) either of the functions u or v is constant, or
(b) $|f(z)|$ is constant for all $z \in \Omega$, or
(c) if there exists an $\alpha \in \mathbb{R}$ such that $f(z)=|f(z)| e^{i \alpha}$ for all $z \in \Omega$.
(8) Let $f: \mathbb{D} \rightarrow \mathbb{C}$ be a differentiable function such that, for all $z, w \in \mathbb{C}$, $\mathrm{f}(\mathrm{z})=\mathrm{f}(\mathrm{w})$ whenever $|z|=|w|$. Prove that f is a constant function. (Use CR equations in polar coordinates)
(9) Let $f=u+i v$ is an analytic function defined on the whole of \mathbb{C}. If $u(x, y)=$ $\phi(x)$ and $v(x, y)=\psi(y)$ prove that, for all $z \in \mathbb{C}, f(z)=a z+b$ for some $a \in \mathbb{C}, b \in \mathbb{C}$.

