MTH102N ASSIGNMENT-C2

Notation: $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}.$

- (1) Find polar representation of all complex numbers satisfying $z^5 = -4$.
- (2) Show that the function $f(z) = f(x+iy) = \sqrt{|xy|}$ satisfies Cauchy Riemann Equations at 0 but it is not differentiable at 0.
- (3) Let $f(z) = z^3$. For $z_1 = 1$ and $z_2 = i$, show that there do not exist any point c on the line y = 1 x joining z_1 and z_2 such that

$$\frac{f(z_1) - f(z_2)}{z_1 - z_2} = f'(c)$$

(Mean value theorem does not extend to complex derivatives).

(4) Suppose that $g : \mathbb{D} \to \mathbb{C}$ is an analytic function with zero derivative. Prove that g is a constant function.

Suppose that $g : \mathbb{D} \cup \{z : |z - 3| < 1\} \to \mathbb{C}$ is an analytic function with zero derivative. Is g necessaryly a constant function?

(5) If f is a differentiable function in an open set Ω , prove that

$$\frac{1}{2}(\frac{\partial f}{\partial x} + i\frac{\partial f}{\partial y}) = 0, \text{ and } f' = \frac{1}{2}(\frac{\partial f}{\partial x} - i\frac{\partial f}{\partial y}).$$

- (6) Let U be an open set and $f: U \to \mathbb{C}$ be a differentiable function. Let $\overline{U} := \{\overline{z} : z \in U\}$. Show that the function $g: \overline{U} \to \mathbb{C}$ defined by $g(z) := \overline{f(\overline{z})}$ is differentiable on \overline{U} .
- (7) Let Ω be an open connected subset of \mathbb{C} and $f: \Omega \to \mathbb{C}$ be a differentiable function. Show that the function f = u + iv is constant if
 - (a) either of the functions u or v is constant, or
 - (b) |f(z)| is constant for all $z \in \Omega$, or
 - (c) if there exists an $\alpha \in \mathbb{R}$ such that $f(z) = |f(z)|e^{i\alpha}$ for all $z \in \Omega$.
- (8) Let $f : \mathbb{D} \to \mathbb{C}$ be a differentiable function such that, for all $z, w \in \mathbb{C}$, f(z)=f(w) whenever |z| = |w|. Prove that f is a constant function. (Use CR equations in polar coordinates)
- (9) Let f = u + iv is an analytic function defined on the whole of \mathbb{C} . If $u(x, y) = \phi(x)$ and $v(x, y) = \psi(y)$ prove that, for all $z \in \mathbb{C}$, f(z) = az + b for some $a \in \mathbb{C}, b \in \mathbb{C}$.