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(1) Determine all z ∈ C for which the following series are absolutely convergent.
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(2) Let an =
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for n = 1, 2, 3 . . . . . .. Show that the series
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converges but it does not converge absolutely.

(3) The following series
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have radius of conver-

gence 1. Show that the series
(a)

∑
n zn does not converge for any z such that |z| = 1,

(b)
∑∞

n=0 zn/n converges for all z 6= 1 such that |z| = 1 and
(c)

∑∞
n=0 zn/n2 converges for all z such that |z| = 1.

(4) Find the radius of convergence of a)
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(5) Let α ∈ C and β ∈ C \ {m}, for all m ∈ N ∪ {0}). Prove that the radius of
convergence of the series
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is either 1 or infinity.
(Hint. What is the series if α = −m, for some m ∈ N ∪ {0})?)

(6) Let α, β ∈ C be such that |α| < |β|. Find the radius of convergence of the
power series

∑∞
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(7) Let R1 and R2 be the radii of convergence of the series
∑
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respectively. Show that the radius of convergence R of the series
∑

n(an +
bn)zn satisfies R ≥ min {R1, R2}.

(8) If limn→∞ |an|
1
n = R show that the radius of convergence of
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is R.
(9) Show that

∑∞
n=0(n + 1)2zn = (1 + z)/(1− z)3, |z| < 1.

(10) Find ii and cosh(Log 4)
(Log stands for the principal branch of the logarithm).

(11) For z1, z2 ∈ C\{0} is it always true that Log (z1z2) = Log z1 +Log z2? Find
the conditions on z1, z2 so that the equality holds.
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