MTH102N
 ASSIGNMENT-C3

(1) Determine all $z \in \mathbb{C}$ for which the following series are absolutely convergent.
a) $\sum \frac{z^{n}}{n^{2}}$,
b) $\sum \frac{z^{n}}{n!}$,
c) $\sum \frac{1}{n!}\left(\frac{1}{z}\right)^{n}$,
d) $\sum \frac{1}{2^{n}} \frac{1}{z^{n}}$.
(2) Let $a_{n}=\frac{(-1)^{n}}{\sqrt{n}}+i \frac{1}{n^{2}}$ for $n=1,2,3 \ldots \ldots$. Show that the series $\sum_{n}^{\infty} a_{n}$ converges but it does not converge absolutely.
(3) The following series $\sum_{n=0}^{\infty} z^{n}, \sum_{n=0}^{\infty} \frac{z^{n}}{n}$ and $\sum_{n=0}^{\infty} \frac{z^{n}}{n^{2}}$ have radius of convergence 1 . Show that the series
(a) $\sum_{n} z^{n}$ does not converge for any z such that $|z|=1$,
(b) $\sum_{n=0}^{\infty} z^{n} / n$ converges for all $z \neq 1$ such that $|z|=1$ and
(c) $\sum_{n=0}^{\infty} z^{n} / n^{2}$ converges for all z such that $|z|=1$.
(4) Find the radius of convergence of a) $\sum_{n} 2 n z^{2 n}$, b) $\sum_{n} n!z^{2 n+1}$, c) $\sum_{n}(-1)^{n} \frac{z^{2 n}}{2 n!}$.
(5) Let $\alpha \in \mathbb{C}$ and $\beta \in \mathbb{C} \backslash\{m\}$, for all $m \in \mathbb{N} \cup\{0\})$. Prove that the radius of convergence of the series

$$
\sum_{n=0}^{\infty} \frac{\alpha(\alpha+1) \ldots(\alpha+n)}{\beta(\beta+1) \ldots(\beta+n)} z^{n}
$$

is either 1 or infinity.
(Hint. What is the series if $\alpha=-m$, for some $m \in \mathbb{N} \cup\{0\})$?)
(6) Let $\alpha, \beta \in \mathbb{C}$ be such that $|\alpha|<|\beta|$. Find the radius of convergence of the power series $\sum_{n=0}^{\infty}\left(3 \alpha^{n}-5 \beta^{n}\right) z^{n}$.
(7) Let R_{1} and R_{2} be the radii of convergence of the series $\sum_{n} a_{n} z^{n}$ and $\sum_{n} b_{n} x^{n}$ respectively. Show that the radius of convergence R of the series $\sum_{n}\left(a_{n}+\right.$ $\left.b_{n}\right) z^{n}$ satisfies $R \geq \min \left\{R_{1}, R_{2}\right\}$.
(8) If $\lim _{n \rightarrow \infty}\left|a_{n}\right|^{\frac{1}{n}}=R$ show that the radius of convergence of $\sum_{n=1}^{\infty} n a_{n} z^{n-1}$ is R.
(9) Show that $\sum_{n=0}^{\infty}(n+1)^{2} z^{n}=(1+z) /(1-z)^{3},|z|<1$.
(10) Find i^{i} and $\cosh (\log 4)$
(Log stands for the principal branch of the logarithm).
(11) For $z_{1}, z_{2} \in \mathbb{C} \backslash\{0\}$ is it always true that $\log \left(z_{1} z_{2}\right)=\log z_{1}+\log z_{2}$? Find the conditions on z_{1}, z_{2} so that the equality holds.

