MTH102N ASSIGNMENT-C3

(1) Determine all $z \in \mathbb{C}$ for which the following series are absolutely convergent.

a)
$$\sum_{\substack{(-1)^n \\ (-1)^n}} \frac{z^n}{n!}$$
, b) $\sum_{\substack{n \\ n!}} \frac{z^n}{n!}$, c) $\sum_{\substack{n \\ n!}} \frac{1}{n!} (\frac{1}{z})^n$, d) $\sum_{\substack{n \\ n!}} \frac{1}{2^n} \frac{1}{z^n}$.

- (2) Let $a_n = \frac{\sqrt{1}}{\sqrt{n}} + i\frac{1}{n^2}$ for n = 1, 2, 3... Show that the series $\sum_{n=1}^{\infty} a_n$ converges but it does not converge absolutely.
- (3) The following series $\sum_{n=0}^{\infty} z^n$, $\sum_{n=0}^{\infty} \frac{z^n}{n}$ and $\sum_{n=0}^{\infty} \frac{z^n}{n^2}$ have radius of convergence 1. Show that the series
- (a) ∑_n zⁿ does not converge for any z such that |z| = 1,
 (b) ∑_{n=0}[∞] zⁿ/n converges for all z ≠ 1 such that |z| = 1 and
 (c) ∑_{n=0}[∞] zⁿ/n² converges for all z such that |z| = 1.
 (4) Find the radius of convergence of a) ∑_n 2nz²ⁿ, b) ∑_n n!z²ⁿ⁺¹, c) $\sum_{n} (-1)^n \frac{z^{2n}}{2n!}$
- (5) Let $\alpha \in \mathbb{C}$ and $\beta \in \mathbb{C} \setminus \{m\}$, for all $m \in \mathbb{N} \cup \{0\}$). Prove that the radius of convergence of the series

$$\sum_{n=0}^{\infty} \frac{\alpha(\alpha+1)\dots(\alpha+n)}{\beta(\beta+1)\dots(\beta+n)} z^n$$

is either 1 or infinity.

(Hint. What is the series if $\alpha = -m$, for some $m \in \mathbb{N} \cup \{0\}$)?)

- (6) Let $\alpha, \beta \in \mathbb{C}$ be such that $|\alpha| < |\beta|$. Find the radius of convergence of the power series $\sum_{n=0}^{\infty} (3\alpha^n - 5\beta^n) z^n$.
- (7) Let R_1 and R_2 be the radii of convergence of the series $\sum_n a_n z^n$ and $\sum_n b_n x^n$ respectively. Show that the radius of convergence R of the series $\sum_{n} (a_n + a_n) = \sum_{n} (a_n + a_n)$ b_n z^n satisfies $R \ge \min \{R_1, R_2\}.$
- (8) If $\lim_{n\to\infty} |a_n|^{\frac{1}{n}} = R$ show that the radius of convergence of $\sum_{n=1}^{\infty} na_n z^{n-1}$ is R.
- (9) Show that $\sum_{n=0}^{\infty} (n+1)^2 z^n = (1+z)/(1-z)^3, |z| < 1.$
- (10) Find i^i and $\cosh(\text{Log } 4)$

(Log stands for the principal branch of the logarithm).

(11) For $z_1, z_2 \in \mathbb{C} \setminus \{0\}$ is it always true that $\text{Log } (z_1 z_2) = \text{Log } z_1 + \text{Log } z_2$? Find the conditions on z_1, z_2 so that the equality holds.