MTH102N ASSIGNMENT-C4

- (1) Evaluate the integral $\int_{\Gamma} z e^{z^2} dz$ where Γ is the curve from 0 to 1 + i taken along the parabola $y = x^2$.
- (2) Let $\mathbb{D} = \{z \in \mathbb{C} : |z| \leq 1\}$ and f be an analytic function defined on \mathbb{D} . Suppose $a, b \in \mathbb{D}$ and $\gamma(t) = a + t(b - a), t \in [0, 1]$ is the straight line joining a and b.

 - (a) Prove that $\frac{f(b)-f(a)}{b-a} = \int_0^1 f'(\gamma(t))dt$. (b) If Re f'(z) > 0 for all $z \in \mathbb{D}$ then prove that f is injective.
- (3) Show that $\int_{\gamma} \frac{e^{az}}{z^2+1} = 2\pi i \sin a$, if $\gamma(\theta) = 2e^{i\theta}$ for $0 \le \theta \le 2\pi$.
- (4) Evaluate the following integrals:

a)
$$\int_0^{2\pi} e^{e^{i\theta}} d\theta$$
, b) $\int_0^{2\pi} e^{e^{i\theta} - i\theta} d\theta$.

- (5) Let C denotes the unit circle with counterclockwise orientation.
 - (a) Evaluate the integral

$$\int_C \left(\frac{z-2}{2z-1}\right)^3 dz$$

- (b) Without using Cauchy's integral formula evaluate $\int_C \frac{\sin z}{z} dz$.
- (6) Let $f : \mathbb{C} \to \mathbb{C}$ be a function which is analytic on $\{z \in \mathbb{C} : z \neq 0\}$ and bounded on the set $\{z \in \mathbb{C} : |z| \leq \frac{1}{2}\}$. Prove that $\int_{|z|=R} f(z)dz = 0$ for every R > 0.
- (7) (Mean Value theorem) Let Ω be a simply connected domain and $f: \Omega \to \mathbb{C}$ be an analytic function. Then prove that $f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{i\theta}) d\theta$ for every r > 0 such that $B(z_0, r)$ is contained in Ω .
- (8) Let $f: \mathbb{C} \to \mathbb{C}$ be an analytic function such that $|f(z)| \leq A + B|z|^k$ for some $k \in \mathbb{N}$ and for some positive real numbers A and B. Show that f is a polynomial of degree at most k.
- (9) Let $f: \mathbb{C} \to \mathbb{C}$ be an entire function such that $\lim_{z \to \infty} \frac{|f(z)|}{|z|} = 0$. Show that fis constant.
- (10) Let $f: \mathbb{C} \to \mathbb{C}$ be a non-constant entire function. Show that the image of the function has to necessarily meet the real axis and imaginary axis.

MTH102N ASSIGNMENT-C4

- (11) Let $f: D \to D$ be an analytic function such that f(0) = 0. Show that
 - (a) $|f(z)| \le |z|$ for all $z \in \mathbb{C}$ and $|f'(0)| \le 1$.
 - (b) If $|f(z_0)| = |z_0|$ for some $z_0 \in D$ or |f'(0)| = 1, then there exist $c \in \mathbb{C}$ such that |c| = 1 and f(z) = cz for all $z \in D$.
- (12) Let $f_j : \mathbb{C} \to \mathbb{C}$, j = 1, 2 be analytic functions such that $f_1(a_n) = f_2(a_n)$ for a bounded sequence of complex numbers. Show that the functions are same.
- (13) Find the maximum of the function |f| if
 - (a) $f(z) = z^2 z$ on \overline{D} .
 - (b) $f(z) = \sin z$ on \overline{D} .