MTH102N ASSIGNMENT-C5

- (1) Give examples of entire functions f such that $f(z^2) = [f(z)]^2$ for all $z \in \mathbb{C}$. Determine all such entire functions.
- (2) Find:
 - (a) Taylor series of the function $f(z) = \frac{1}{z_1^2}$ in powers of (z 1).
 - (b) Laurent series of the function $f(z) = \frac{1}{z^2}$ for $\{z : |z-1| > 1\}$.

(3) (a) Find Laurent series of the function $f(z) = \frac{6z+8}{(2z+3)(4z+5)}$ in the regions

$$\{z \in \mathbb{C} : \frac{5}{4} < |z| < \frac{3}{2}\}, \quad \{z \in \mathbb{C} : |z| < \frac{5}{4}\}, \quad \{z \in \mathbb{C} : |z| > \frac{3}{2}\}.$$

(b) Find Laurent series of the function $f(z) = \frac{1}{z^3 - z^4}$ in the regions $\{z \in \mathbb{C} : 0 < |z| < 1\}, \{z \in \mathbb{C} : |z| > 1\}.$

- (4) Find the Laurent series of the function $f(z) = \exp(z + \frac{1}{z})$ around 0. Hence show that $\frac{1}{2\pi} \int_0^{2\pi} e^{2\cos\theta} \cos n\theta d\theta = \sum_{j=0}^\infty \frac{1}{(n+j)!j!}$.
- (5) Is there a polynomial P(z) such that $P(z)e^{1/z}$ is an entire function? Justify your answer!
- (6) Which of the following singularities are removable/pole:

a)
$$\frac{\sin z}{z^2 - \pi^2}$$
, $z = \pi b$) $\frac{\sin z}{(z - \pi)^2}$, $z = \pi c$) $\frac{z \cos z}{1 - \sin z}$, $z = \pi/2$