MTH102N
 ASSIGNMENT-C5

(1) Give examples of entire functions f such that $f\left(z^{2}\right)=[f(z)]^{2}$ for all $z \in \mathbb{C}$. Determine all such entire functions.
(2) Find:
(a) Taylor series of the function $f(z)=\frac{1}{z^{2}}$ in powers of $(z-1)$.
(b) Laurent series of the function $f(z)=\frac{1}{z^{2}}$ for $\{z:|z-1|>1\}$.
(3) (a) Find Laurent series of the function $f(z)=\frac{6 z+8}{(2 z+3)(4 z+5)}$ in the regions

$$
\left\{z \in \mathbb{C}: \frac{5}{4}<|z|<\frac{3}{2}\right\}, \quad\left\{z \in \mathbb{C}:|z|<\frac{5}{4}\right\}, \quad\left\{z \in \mathbb{C}:|z|>\frac{3}{2}\right\}
$$

(b) Find Laurent series of the function $f(z)=\frac{1}{z^{3}-z^{4}}$ in the regions

$$
\{z \in \mathbb{C}: 0<|z|<1\}, \quad\{z \in \mathbb{C}:|z|>1\}
$$

(4) Find the Laurent series of the function $f(z)=\exp \left(z+\frac{1}{z}\right)$ around 0 . Hence show that $\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{2 \cos \theta} \cos n \theta d \theta=\sum_{j=0}^{\infty} \frac{1}{(n+j)!j!}$.
(5) Is there a polynomial $P(z)$ such that $P(z) e^{1 / z}$ is an entire function? Justify your answer!
(6) Which of the following singularities are removable/pole:

$$
\text { a) } \left.\left.\frac{\sin z}{z^{2}-\pi^{2}}, z=\pi b\right) \frac{\sin z}{(z-\pi)^{2}}, z=\pi c\right) \frac{z \cos z}{1-\sin z}, z=\pi / 2
$$

